Enhancing detection of SSVEPs using discriminant compacted network

计算机科学 人工智能 模式识别(心理学) 水准点(测量) 线性判别分析 脑-机接口 人工神经网络 可穿戴计算机 解码方法 判别式 脑电图 算法 心理学 大地测量学 精神科 嵌入式系统 地理
作者
Dian Li,Yongzhi Huang,Ruixin Luo,Liancheng Zhao,Xiaolin Xiao,Kun Wang,Weibo Yi,Minpeng Xu,Dong Ming
出处
期刊:Journal of Neural Engineering [IOP Publishing]
标识
DOI:10.1088/1741-2552/adb0f2
摘要

Abstract Abstract—Objective. Steady-state visual evoked potential-based brain-computer interfaces (SSVEP-BCIs) have gained significant attention due to their simplicity, high signal to noise ratio (SNR) and high information transfer rates (ITRs). Currently, accurate detection is a critical issue for enhancing the performance of SSVEP-BCI systems. Approach. This study proposed a novel decoding method called Discriminant Compacted Network (Dis-ComNet), which exploited the advantages of both spatial filtering and deep learning. Specifically, this study enhanced SSVEP features using Global template alignment (GTA) and Discriminant Spatial Pattern (DSP), and then designed a Compacted Temporal-Spatio module (CTSM) to extract finer features. The proposed method was evaluated on a self-collected high-frequency dataset, a public Benchmark dataset and a public wearable dataset. Main Results. The results showed that Dis-ComNet significantly outperformed state-of-the-art spatial filtering methods, deep learning methods, and other fusion methods. Remarkably, Dis-ComNet improved the classification accuracy by 3.9%, 3.5%, 3.2%, 13.3%, 17.4%, 37.5%, and 2.5% when comparing with eTRCA, eTRCA-R, TDCA, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively in the high-frequency dataset. The achieved results were 4.7%, 4.6%, 23.6%, 52.5%, 31.7%, and 7.0% higher than those of eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net, respectively, and were comparable to those of TDCA in Benchmark dataset.The accuracy of Dis-ComNet in the wearable dataset was 9.5%, 7.1%, 36.1%, 26.3%, 15.7% and 4.7% higher than eTRCA, eTRCA-R, DNN, EEGnet, Ensemble-DNN, and TRCA-Net respectively, and comparable to TDCA. Besides, our model achieved the ITRs up to 126.0 bits/min, 236.4 bits/min and 103.6 bits/min in the high-frequency, Benchmark and the wearable datasets respectively. Significance. This study develops an effective model for the detection of SSVEPs, facilitating the development of high accuracy SSVEP-BCI systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木发布了新的文献求助10
刚刚
犹豫的小懒猪完成签到 ,获得积分10
1秒前
王彬发布了新的文献求助10
4秒前
4秒前
圈圈完成签到 ,获得积分10
5秒前
5秒前
青椒肉丝发布了新的文献求助10
7秒前
和谐煜祺完成签到,获得积分10
8秒前
8秒前
8秒前
啊啊的发布了新的文献求助10
9秒前
10秒前
10秒前
慕青应助夕荀采纳,获得10
12秒前
12秒前
里里完成签到,获得积分20
13秒前
Iridescent发布了新的文献求助10
14秒前
充电宝应助不知道采纳,获得10
16秒前
自觉柠檬发布了新的文献求助10
16秒前
AllenZ发布了新的文献求助10
16秒前
情怀应助xyzlancet采纳,获得10
16秒前
17秒前
17秒前
18秒前
科研通AI2S应助啊啊的采纳,获得10
21秒前
凉小远发布了新的文献求助10
21秒前
23秒前
研友_VZG7GZ应助研友_nEjYyZ采纳,获得10
23秒前
酷波er应助123444采纳,获得10
23秒前
毛豆应助忧伤的玲采纳,获得20
25秒前
魁梧的盼望完成签到 ,获得积分10
26秒前
RR发布了新的文献求助10
28秒前
30秒前
35秒前
草木发布了新的文献求助10
35秒前
充电宝应助小啊三采纳,获得10
35秒前
今后应助kksun采纳,获得10
36秒前
38秒前
英俊的铭应助朴素的士晋采纳,获得10
39秒前
39秒前
高分求助中
Востребованный временем 2500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
图片求出处 Agentic RAG Workflow 500
Principles of Ultraviolet Photoelectron Spectroscopy 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3429938
求助须知:如何正确求助?哪些是违规求助? 3028466
关于积分的说明 8928654
捐赠科研通 2716095
什么是DOI,文献DOI怎么找? 1489855
科研通“疑难数据库(出版商)”最低求助积分说明 688551
邀请新用户注册赠送积分活动 684410