Advanced Camera-Based Scoliosis Screening via Deep Learning Detection and Fusion of Trunk, Limb, and Skeleton Features

人工智能 计算机科学 后备箱 脊柱侧凸 骨架(计算机编程) 计算机视觉 医学 外科 生物 生态学 程序设计语言
作者
Ziyan Wang,Yi Zhou,Ninghui Xu,Yuqin Zhou,Heran Zhao,Zhi-Yong Chang,Zhigang Hu,Xiaotao Han,Yuke Song,Zuojian Zhou,Tianshu Wang,Tao Yang,Kongfa Hu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3491855
摘要

Scoliosis significantly impacts quality of life, highlighting the need for effective early scoliosis screening (SS) and intervention. However, current SS methods often involve physical contact, undressing, or radiation exposure. This study introduces an innovative, non-invasive SS approach utilizing a monocular RGB camera that eliminates the need for undressing, sensor attachment, and radiation exposure. We introduce a novel approach that employs Parameterized Human 3D Reconstruction (PH3DR) to reconstruct 3D human models, thereby effectively eliminating clothing obstructions, seamlessly integrated with an ISANet segmentation network, which has been enhanced by Multi-Scale Fusion Attention (MSFA) module we proposed for facilitating the segmentation of distinct human trunk and limb features (HTLF), capturing body surface asymmetries related to scoliosis. Additionally, we propose a Swin Transformer-enhanced CMU-Pose to extract human skeleton features (HSF), identifying skeletal asymmetries crucial for SS. Finally, we develop a fusion model that integrates the HTLF and HSF, combining surface morphology and skeletal features to improve the precision of SS. The experiments demonstrated that PH3DR and MSFA significantly improved the segmentation and extraction of HTLF, whereas ST-based CMU-Pose substantially enhanced the extraction of HSF. Our final model achieved a comparable F1 (0.895 ±0.014) to the best-performing baseline model, with only 0.79% of the parameters and 1.64% of the FLOPs, achieving 36 FPS-significantly higher than the best-performing baseline model (10 FPS). Moreover, our model outperformed two spine surgeons, one less experienced and the other moderately experienced. With its patient-friendly, privacy-preserving, and easily deployable solution, this approach is particularly well-suited for early SS and routine monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
锅包肉完成签到,获得积分10
3秒前
好吃的烤雞完成签到,获得积分10
3秒前
沉静小萱完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
炙热小馒头完成签到,获得积分10
6秒前
xiaojian_291发布了新的文献求助10
7秒前
123发布了新的文献求助10
8秒前
wgglegg完成签到,获得积分10
8秒前
咕咕咕发布了新的文献求助10
9秒前
9秒前
我是老大应助Kaen采纳,获得10
10秒前
10秒前
白元正发布了新的文献求助10
10秒前
11秒前
踏实的念柏完成签到,获得积分20
11秒前
醉蟹肠粉发布了新的文献求助10
11秒前
科研通AI5应助沉稳捺采纳,获得10
11秒前
11秒前
每念至此完成签到,获得积分10
14秒前
14秒前
谦让的半山完成签到 ,获得积分10
15秒前
xmxm发布了新的文献求助10
15秒前
火星上盼海关注了科研通微信公众号
15秒前
SYLH应助苹果可燕采纳,获得10
15秒前
昵称完成签到,获得积分10
16秒前
17秒前
17秒前
领导范儿应助123采纳,获得10
18秒前
19秒前
共享精神应助qiang采纳,获得10
20秒前
21秒前
小机灵发布了新的文献求助10
21秒前
Spike629发布了新的文献求助10
22秒前
22秒前
小耿完成签到 ,获得积分10
23秒前
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761395
求助须知:如何正确求助?哪些是违规求助? 3305279
关于积分的说明 10133188
捐赠科研通 3019218
什么是DOI,文献DOI怎么找? 1658046
邀请新用户注册赠送积分活动 791820
科研通“疑难数据库(出版商)”最低求助积分说明 754655