Fish Tracking, Counting, and Behaviour Analysis in Digital Aquaculture: A Comprehensive Survey

水产养殖 渔业 跟踪(教育) 生物 心理学 教育学
作者
Ming-Shu Cui,Xubo Liu,Haohe Liu,Jinzheng Zhao,Daoliang Li,Wenwu Wang
出处
期刊:Reviews in Aquaculture [Wiley]
卷期号:17 (1) 被引量:1
标识
DOI:10.1111/raq.13001
摘要

ABSTRACT Digital aquaculture leverages advanced technologies and data‐driven methods, providing substantial benefits over traditional aquaculture practices. This article presents a comprehensive review of three interconnected digital aquaculture tasks, namely, fish tracking, counting, and behaviour analysis, using a novel and unified approach. Unlike previous reviews which focused on single modalities or individual tasks, we analyse vision‐based (i.e., image‐ and video‐based), acoustic‐based, and biosensor‐based methods across all three tasks. We examine their advantages, limitations, and applications, highlighting recent advancements and identifying critical cross‐cutting research gaps. The review also includes emerging ideas such as applying multitask learning and large language models to address various aspects of fish monitoring, an approach not previously explored in aquaculture literature. We identify the major obstacles hindering research progress in this field, including the scarcity of comprehensive fish datasets and the lack of unified evaluation standards. To overcome the current limitations, we explore the potential of using emerging technologies such as multimodal data fusion and deep learning to improve the accuracy, robustness, and efficiency of integrated fish monitoring systems. In addition, we provide a summary of existing datasets available for fish tracking, counting, and behaviour analysis. This holistic perspective offers a roadmap for future research, emphasizing the need for comprehensive datasets and evaluation standards to facilitate meaningful comparisons between technologies and to promote their practical implementations in real‐world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劲秉应助玛卡巴卡采纳,获得10
1秒前
1秒前
stick完成签到,获得积分10
2秒前
3秒前
刘皮皮皮皮皮完成签到,获得积分10
3秒前
Jasper应助沙克几十块采纳,获得10
3秒前
科研通AI5应助CHINA_C13采纳,获得10
3秒前
yyy完成签到 ,获得积分10
4秒前
5秒前
炒饭发布了新的文献求助10
7秒前
轻松黑裤完成签到,获得积分10
7秒前
宝宝发布了新的文献求助10
8秒前
海的呼唤发布了新的文献求助10
8秒前
9秒前
9秒前
炒饭完成签到,获得积分10
11秒前
Owen应助沙克几十块采纳,获得10
11秒前
倾落发布了新的文献求助10
14秒前
gu发布了新的文献求助10
15秒前
15秒前
jiyuehan666发布了新的文献求助10
18秒前
龙弟弟发布了新的文献求助10
18秒前
liang完成签到,获得积分10
18秒前
Ssyong发布了新的文献求助10
18秒前
Amie完成签到,获得积分20
19秒前
celina完成签到 ,获得积分10
22秒前
爆米花应助lxy采纳,获得10
22秒前
科研通AI5应助飘逸易文采纳,获得10
24秒前
Orange应助super chan采纳,获得10
26秒前
汉堡包应助吃不完采纳,获得10
27秒前
bkagyin应助沙克几十块采纳,获得10
27秒前
烟花应助滴滴哩哩采纳,获得10
30秒前
32秒前
啊宁完成签到 ,获得积分10
34秒前
linxcc完成签到 ,获得积分10
34秒前
34秒前
小蘑菇应助沙克几十块采纳,获得10
35秒前
36秒前
lithion发布了新的文献求助10
36秒前
lxy发布了新的文献求助10
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296