The study on ultrasound image classification using a dual-branch model based on Resnet50 guided by U-net segmentation results

计算机科学 甲状腺结节 人工智能 分割 结核(地质) 模式识别(心理学) 图像分割 放射科 医学 甲状腺 古生物学 内科学 生物
作者
Yang Xu,Shuoou Qu,Zhilin Wang,Lingxiao Li,Xiaofeng An,Zhibin Cong
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12880-024-01486-z
摘要

In recent years, the incidence of nodular thyroid diseases has been increasing annually. Ultrasonography has become a routine diagnostic tool for thyroid nodules due to its high real-time capabilities and low invasiveness. However, thyroid images obtained from current ultrasound tests often have low resolution and are plagued by significant noise interference. Regional differences in medical conditions and varying levels of physician experience can impact the accuracy and efficiency of diagnostic results. With the advancement of deep learning technology, deep learning models are used to identify whether a nodule in a thyroid ultrasound image is benign or malignant. This helps to close the gap between doctors' experience and equipment differences, improving the accuracy of the initial diagnosis of thyroid nodules. To cope with the problem that thyroid ultrasound images contain complex background and noise as well as poorly defined local features. in this paper, we first construct an improved ResNet50 classification model that uses a two-branch input and incorporates a global attention lightening module. This model is used to improve the accuracy of benign and malignant nodule classification in thyroid ultrasound images and to reduce the computational effort due to the two-branch structure.We constructed a U-net segmentation model incorporating our proposed ACR module, which uses hollow convolution with different dilation rates to capture multi-scale contextual information for feature extraction of nodules in thyroid ultrasound images and uses the results of the segmentation task as an auxiliary branch for the classification task to guide the classification model to focus on the lesion region more efficiently in the case of weak local features. The classification model is guided to focus on the lesion region more efficiently, and the classification and segmentation sub-networks are respectively improved specifically for this study, which is used to improve the accuracy of classifying the benign and malignant nature of the nodules in thyroid ultrasound images. The experimental results show that the four evaluation metrics of accuracy, precision, recall, and f1 of the improved model are 96.01%, 93.3%, 98.8%, and 96.0%, respectively. The improvements were 5.7%, 1.6%, 13.1%, and 7.4%, respectively, compared with the baseline classification model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小曾发布了新的文献求助30
1秒前
JJ发布了新的文献求助10
1秒前
感谢皮毛柔软的猫转发科研通微信,获得积分50
1秒前
等待秋尽完成签到,获得积分20
2秒前
西奥发布了新的文献求助10
2秒前
3秒前
hsj123123发布了新的文献求助10
4秒前
wjq20001002发布了新的文献求助50
4秒前
感谢patience转发科研通微信,获得积分50
5秒前
灰太狼完成签到,获得积分10
5秒前
丸子完成签到 ,获得积分10
6秒前
SciGPT应助NXK采纳,获得10
7秒前
clhfio完成签到,获得积分10
7秒前
夕诙发布了新的文献求助30
7秒前
yym发布了新的文献求助10
7秒前
等待静枫关注了科研通微信公众号
7秒前
zkwgly发布了新的文献求助10
8秒前
8秒前
感谢姚姚转发科研通微信,获得积分50
8秒前
8秒前
8秒前
大个应助Fan采纳,获得10
9秒前
感谢赖成文转发科研通微信,获得积分50
11秒前
NexusExplorer应助汪汪采纳,获得10
12秒前
muyangsiyuan完成签到,获得积分10
13秒前
感谢Cpp转发科研通微信,获得积分50
13秒前
cdercder应助西奥采纳,获得10
14秒前
鲤鱼笑白发布了新的文献求助10
14秒前
14秒前
丘比特应助严笑容采纳,获得30
14秒前
zkwgly发布了新的文献求助10
14秒前
15秒前
964230130发布了新的文献求助10
15秒前
17秒前
爆米花应助厂里打工人采纳,获得10
17秒前
喜羊羊发布了新的文献求助10
18秒前
面包会有的完成签到,获得积分10
18秒前
黄文博发布了新的文献求助10
19秒前
佛系发布了新的文献求助10
19秒前
英姑应助野葱采纳,获得10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737633
求助须知:如何正确求助?哪些是违规求助? 3281316
关于积分的说明 10024435
捐赠科研通 2998032
什么是DOI,文献DOI怎么找? 1645003
邀请新用户注册赠送积分活动 782459
科研通“疑难数据库(出版商)”最低求助积分说明 749814