羟丙基纤维素
低临界溶液温度
聚合物
羧甲基纤维素
控制释放
乙基纤维素
材料科学
致电离效应
傅里叶变换红外光谱
核化学
化学工程
粒径
高分子化学
钠
化学
有机化学
纳米技术
复合材料
共聚物
受体
工程类
NMDA受体
生物化学
标识
DOI:10.1080/09205063.2022.2135077
摘要
Today, polymer systems can be formed to respond to single stimuli or multiple stimuli by changing their properties. The use of these systems, which are designed to be sensitive to stimuli, is expanding in a wide range of applications. Herein, microspheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions. FTIR, DSC, TGA, SEM, and particle size measurements were used to describe the blend microspheres. Low critical solution temperatures (LCST) of polymer blends at different ratios were determined and the biggest change according to the LCST value of HPC was found to be approximately 1-2 °C lower than 41 °C in microspheres with a NaAlg/HPC ratio of 50/50. In vitro release experiments of paracetamol from microspheres were carried out in a gastrointestinal tract simulation environment at two different temperatures (37 °C and 47 °C). From the release profiles, paracetamol release varied depending on the NaAlg/HPC ratio, the paracetamol content in the microspheres, the exposure time to Zn2+ ions, and the pH of the medium. Among the microsphere formulations, the highest entrapment efficiency was 57.86%, obtained for B7 formulation microspheres with a NaAlg/HPC ratio of 70/30, a paracetamol loading percentage of 20%, and a crosslinking time of 5 min.RESEARCH HIGHLIGHTSMicrospheres of sodium alginate (NaAlg) and hydroxypropyl cellulose (HPC) sensitive to dual stimuli for the controlled release of model drug paracetamol were produced by the ionotropic gelation method in the presence of Zn2+ ions.LCST values of the microspheres with a NaAlg/HPC ratio of 50/50 were significantly lower by 1-2 °C than the LCST value of HPC, and the release results supported the temperature sensitivity of the microspheres.Among the microsphere formulations, the highest entrapment efficiency was 57.86% obtained for B7 formulation microspheres.These microspheres can be used as a temperature-sensitive drug delivery system in the biomedical field and also as an encapsulation system of cancer drugs for cancer treatment modalities such as hyperthermia.
科研通智能强力驱动
Strongly Powered by AbleSci AI