作者
Mitchell C. Watts,Loren Picco,Freddie Russell-Pavier,Patrick L. Cullen,Thomas S. Miller,Szymon P. Bartuś,Oliver Payton,Neal T. Skipper,Vasiliki Tileli,Christopher A. Howard
摘要
Phosphorene is a mono-elemental, two-dimensional (2D) substance with outstanding, highly directional properties and a bandgap that depends on the number of layers of the material1–8. Nanoribbons, meanwhile, combine the flexibility and unidirectional properties of one-dimensional nanomaterials, the high surface area of 2D nanomaterials and the electron-confinement and edge effects of both. The structures of nanoribbons can thus lead to exceptional control over electronic band structure, the emergence of novel phenomena and unique architectures for applications5,6,9–24. Phosphorene’s intrinsically anisotropic structure has motivated numerous theoretical calculations of phosphorene nanoribbons (PNRs), predicting extraordinary properties5,6,12–24. So far, however, discrete PNRs have not been produced. Here we present a method for creating quantities of high-quality, individual PNRs by ionic scissoring of macroscopic black phosphorus crystals. This top–down process results in stable liquid dispersions of PNRs with typical widths of 4–50 nm, predominantly single-layer thickness, measured lengths of up to 75 μm and aspect ratios of up to 1,000. The nanoribbons are atomically flat single crystals, aligned exclusively in the zigzag crystallographic orientation. The ribbons have remarkably uniform widths along their entire lengths, and are extremely flexible. These properties—together with the ease of downstream manipulation via liquid-phase methods—should enable the search for predicted exotic states6,12–14,17–19,21, and an array of applications in which PNRs have been predicted to offer transformative advantages. These applications range from thermoelectric devices to high-capacity fast-charging batteries and integrated high-speed electronic circuits6,14–16,20,23,24. Phosphorene nanoribbons are produced in liquids through the intercalation of black phosphorous crystals with lithium ions, enabling the search for predicted exotic states and applications of these nanoribbons.