Towards End-to-End Lane Detection: an Instance Segmentation Approach

端到端原则 计算机科学 人工智能 分割 计算机视觉
作者
Davy Neven,Bert De Brabandere,Stamatios Georgoulis,Marc Proesmans,Luc Van Gool
标识
DOI:10.1109/ivs.2018.8500547
摘要

Modern cars are incorporating an increasing number of driver assist features, among which automatic lane keeping. The latter allows the car to properly position itself within the road lanes, which is also crucial for any subsequent lane departure or trajectory planning decision in fully autonomous cars. Traditional lane detection methods rely on a combination of highly-specialized, hand-crafted features and heuristics, usually followed by post-processing techniques, that are computationally expensive and prone to scalability due to road scene variations. More recent approaches leverage deep learning models, trained for pixel-wise lane segmentation, even when no markings are present in the image due to their big receptive field. Despite their advantages, these methods are limited to detecting a pre-defined, fixed number of lanes, e.g. ego-lanes, and can not cope with lane changes. In this paper, we go beyond the aforementioned limitations and propose to cast the lane detection problem as an instance segmentation problem - in which each lane forms its own instance - that can be trained end-to-end. To parametrize the segmented lane instances before fitting the lane, we further propose to apply a learned perspective transformation, conditioned on the image, in contrast to a fixed "bird's-eye view" transformation. By doing so, we ensure a lane fitting which is robust against road plane changes, unlike existing approaches that rely on a fixed, predefined transformation. In summary, we propose a fast lane detection algorithm, running at 50 fps, which can handle a variable number of lanes and cope with lane changes. We verify our method on the tuSimple dataset and achieve competitive results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wood发布了新的文献求助10
1秒前
2秒前
闪闪沛容完成签到,获得积分10
2秒前
4秒前
4秒前
6秒前
hhx完成签到,获得积分10
7秒前
wy.he应助落尘采纳,获得10
12秒前
澈千子完成签到,获得积分10
16秒前
18秒前
Leisure_Lee完成签到,获得积分10
19秒前
超级冷松完成签到 ,获得积分10
20秒前
xiaozhao完成签到 ,获得积分10
21秒前
沫崽完成签到 ,获得积分10
22秒前
23秒前
安静的棉花糖完成签到 ,获得积分10
24秒前
water完成签到,获得积分10
24秒前
lucky发布了新的文献求助10
24秒前
wood发布了新的文献求助10
25秒前
黑武士完成签到 ,获得积分10
26秒前
小次之山完成签到,获得积分10
26秒前
搜集达人应助李昕123采纳,获得10
27秒前
27秒前
小恐龙飞飞完成签到 ,获得积分10
31秒前
勤劳篮球发布了新的文献求助10
31秒前
英姑应助chiron采纳,获得10
32秒前
感动的安阳完成签到,获得积分20
33秒前
刻苦的晓蕾完成签到,获得积分10
33秒前
不配.应助完美的海秋采纳,获得10
33秒前
zhaoyw关注了科研通微信公众号
35秒前
exosome完成签到,获得积分10
37秒前
ky小白白完成签到 ,获得积分10
38秒前
方若剑应助doctorshg采纳,获得100
38秒前
星辰大海应助Liam采纳,获得10
39秒前
yy完成签到,获得积分10
39秒前
Simple完成签到,获得积分10
40秒前
40秒前
42秒前
43秒前
oyk完成签到 ,获得积分10
43秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242411
求助须知:如何正确求助?哪些是违规求助? 2886764
关于积分的说明 8244805
捐赠科研通 2555314
什么是DOI,文献DOI怎么找? 1383399
科研通“疑难数据库(出版商)”最低求助积分说明 649702
邀请新用户注册赠送积分活动 625537