接触角
材料科学
碘化物
钙钛矿(结构)
化学工程
纳米技术
化学物理
润湿
复合材料
无机化学
化学
工程类
作者
Claudia Caddeo,Daniela Marongiu,Simone Meloni,Alessio Filippetti,Francesco Quochi,Michele Saba,Alessandro Mattoni
标识
DOI:10.1002/admi.201801173
摘要
Abstract Surface properties are often assessed with measurements of the contact angle of a water drop. The process is however flawed for the very important class of hybrid perovskite materials, extensively employed in solar cells and optoelectronics research, because they are water soluble and their surface degrades during contact angle measurements. While hybrid perovskites are considered to be highly hydrophilic, a contact angle with water of 83° can be measured, as if they were almost hydrophobic. By combining experiments and simulations, the actual value is explained as the result of the interaction of water with degraded superficial layers that form over sub‐millisecond time scale at the water/perovskite interface. The models are validated against contact angle measurements for water on a variety of substrates, and are referenced to with the Young–Dupré relation between liquid–solid adhesion and contact angle. Present work reconciles the hydrophilic nature of methylammonium lead iodide with the apparent hydrophobic behavior in contact angle measurements, proposing a methodology for the study of contact angle on evolving substrates.
科研通智能强力驱动
Strongly Powered by AbleSci AI