Lactate: A Metabolic Driver in the Tumour Landscape

免疫监视 糖酵解 癌细胞 生物 免疫系统 瓦博格效应 新陈代谢 癌症研究 肿瘤微环境 细胞 细胞信号 癌症 细胞生物学 生物化学 信号转导 免疫学 遗传学
作者
Luigi Ippolito,Andrea Morandi,Elisa Giannoni,Paola Chiarugi
出处
期刊:Trends in Biochemical Sciences [Elsevier BV]
卷期号:44 (2): 153-166 被引量:494
标识
DOI:10.1016/j.tibs.2018.10.011
摘要

In a tumour environment, lactate is no longer considered as a waste product from fermentative cell metabolism but instead as a powerful molecule that affects the behaviour of each cell surrounding and recruited to the tumour. Lactate establishes metabolic coupling between cancer cells and non-malignant cells, or among cancer cells themselves, thereby sustaining tumour growth. Lactate plays a key role in dampening immunosurveillance mediated by a plethora of immune cells recruited to the tumour site. Environmental lactate triggers signalling activation according to the cell subtype and its specific transporters/receptors. Targeting lactate metabolism and transport is a promising approach for cancer therapeutics. The presence of lactate in human tumours has been long neglected, confined to the role of a waste product derived from glycolysis and as a biomarker of malignancy. More recently, lactate has been rediscovered as signalling molecule that plays important roles in the regulation of the metabolic pathways, the immune response, and cell-to-cell communication within the tumour microenvironment. This review examines recent discoveries about the functional role of lactate in shaping the behaviour and the phenotype of tumour and tumour-associated cells, and describes potential clinical approaches to target lactate transport and metabolism in tumours. The presence of lactate in human tumours has been long neglected, confined to the role of a waste product derived from glycolysis and as a biomarker of malignancy. More recently, lactate has been rediscovered as signalling molecule that plays important roles in the regulation of the metabolic pathways, the immune response, and cell-to-cell communication within the tumour microenvironment. This review examines recent discoveries about the functional role of lactate in shaping the behaviour and the phenotype of tumour and tumour-associated cells, and describes potential clinical approaches to target lactate transport and metabolism in tumours. the dominant stromal cell type in solid tumours, with mesenchyme-like features and the phenotype of activated myofibroblasts. They participate in tumour progression by producing cytokines, chemokines, metabolites, enzymes, and extracellular matrix that sustain the growth of tumour cells. a family of proteins that transport glucose across the plasma membrane. a process in which glutamine is converted into glutamate, then entering the TCA cycle. a family of transcription factors that mediate metabolic and cellular responses to environmental changes such as hypoxia, oxidative stress, and nutrient metabolism. a transcription factor involved in the control of diverse cellular processes, including immune and inflammatory responses, cellular growth, and apoptosis. In the cytoplasm NF-κB binds to the inhibitor IκB in an inactive state; when IκB is phosphorylated and degraded, NF-κB translocates to the nucleus and drives gene expression. a branch from glycolysis – at the first step of glucose metabolism – that is essential for the synthesis of ribonucleotides and NADPH; the latter is required for the free radical scavenging system and is consumed during fatty acid synthesis. a family of iron- and 2-oxoglutarate-dependent dioxygenase enzymes that are involved in cellular adaptation to hypoxia and in the stability of collagen. a type of T cells that participate in the adaptive immune response and that differentiate into different subsets (TH1, TH2, TH17, and regulatory T cells; Tregs) as a function of specific stimuli. a cycle of aerobic reactions that provides energy by the oxidation of acetyl-CoA derived from sugars, lipids, or proteins. non-cancer or stromal cells and the extracellular matrix found in a tumour; the TME mainly comprises CAFs, blood vessels, and immune cells. a metabolic pathway that promotes high exploitation of glucose for rapid energy production and the flow of glycolytic intermediates into collateral pathways to synthesize nucleic acids, amino acids, and lipids, usually culminating in massive lactate production even under normoxic conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Flowey完成签到,获得积分20
刚刚
丘比特应助fortune采纳,获得10
1秒前
田镓栋完成签到,获得积分10
1秒前
greatsnow发布了新的文献求助10
2秒前
白开水完成签到,获得积分10
2秒前
2秒前
3秒前
guozizi发布了新的文献求助30
3秒前
xiaoguo完成签到,获得积分20
3秒前
华仔应助yoyo采纳,获得10
4秒前
熊儒恒完成签到,获得积分10
5秒前
5秒前
魏强发布了新的文献求助10
8秒前
8秒前
理躺丁真完成签到,获得积分10
9秒前
Criminology34应助赶路人采纳,获得10
9秒前
10秒前
zeannezg发布了新的文献求助10
11秒前
Dun完成签到,获得积分10
13秒前
13秒前
zyt完成签到,获得积分10
13秒前
15秒前
15秒前
atterct完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
15秒前
weiboo发布了新的文献求助10
16秒前
atterct发布了新的文献求助10
18秒前
华仔应助火星上的碧空采纳,获得10
18秒前
科研通AI2S应助Flowey采纳,获得10
18秒前
新年快乐完成签到,获得积分10
18秒前
追剧狂魔完成签到,获得积分10
19秒前
19秒前
不吃了发布了新的文献求助30
20秒前
20秒前
乐乐应助葡萄小伊ovo采纳,获得10
21秒前
greatsnow发布了新的文献求助10
21秒前
22秒前
安详的真完成签到 ,获得积分20
22秒前
汉堡包应助jason采纳,获得10
22秒前
yoyo发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5153393
求助须知:如何正确求助?哪些是违规求助? 4348981
关于积分的说明 13540659
捐赠科研通 4191526
什么是DOI,文献DOI怎么找? 2299002
邀请新用户注册赠送积分活动 1298954
关于科研通互助平台的介绍 1243960