自愈水凝胶
材料科学
热导率
聚丙烯酰胺
体积分数
聚合物
化学工程
相(物质)
纳米尺度
导电体
离子键合
电导率
复合材料
热的
分数(化学)
化学物理
纳米技术
高分子化学
热力学
离子
化学
有机化学
物理化学
工程类
物理
作者
Shuai Xu,Shengqiang Cai,Zishun Liu
标识
DOI:10.1021/acsami.8b09891
摘要
A polymer network can imbibe copious amounts of water and swell, and the resulting state is known as a hydrogel. In many potential applications of hydrogels, such as stretchable conductors, ionic cables, and neuroprostheses, the thermal conductivities of hydrogels should be understood clearly. In the present work, we build molecular dynamics (MD) models of random cross-linked polyacrylamide hydrogels with different water volume fractions through a reaction method. On the basis of these models, thermal conductivities of hydrogels at the nanoscale are investigated by a none-equilibrium MD method. This work reveals that when the water fraction of hydrogels is under 85%, the thermal conductivity increases with the water fraction, and can be even higher than the thermal conductivities of both pure polymer networks and pure water because of the influence of the interface between polymer networks and water. However, when the water fraction in hydrogels is bigger than 85%, its thermal conductivity will decrease and get close to the water's conductivity. Accordingly, to explain this abnormal phenomenon, a 2-order-3-phase theoretical model is proposed by considering hydrogel as a 3-phase composite. It can be found that the proposed theory can predict results which agree quite well with our simulated results.
科研通智能强力驱动
Strongly Powered by AbleSci AI