High Capacity Garnet-Based All-Solid-State Lithium Batteries: Fabrication and 3D-Microstructure Resolved Modeling

材料科学 微观结构 制作 锂(药物) 固态 纳米技术 化学工程 工程物理 复合材料 医学 工程类 内分泌学 病理 替代医学
作者
Martin Finsterbusch,Timo Danner,Chih−Long Tsai,Sven Uhlenbruck,Arnulf Latz,Olivier Guillon
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (26): 22329-22339 被引量:102
标识
DOI:10.1021/acsami.8b06705
摘要

The development of high-capacity, high-performance all-solid-state batteries requires the specific design and optimization of its components, especially on the positive electrode side. For the first time, we were able to produce a completely inorganic mixed positive electrode consisting only of LiCoO2 and Ta-substituted Li7La3Zr2O12 (LLZ:Ta) without the use of additional sintering aids or conducting additives, which has a high theoretical capacity density of 1 mAh/cm2. A true all-solid-state cell composed of a Li metal negative electrode, a LLZ:Ta garnet electrolyte, and a 25 μm thick LLZ:Ta + LiCoO2 mixed positive electrode was manufactured and characterized. The cell shows 81% utilization of theoretical capacity upon discharging at elevated temperatures and rather high discharge rates of 0.1 mA (0.1 C). However, even though the room temperature performance is also among the highest reported so far for similar cells, it still falls far short of the theoretical values. Therefore, a 3D reconstruction of the manufactured mixed positive electrode was used for the first time as input for microstructure-resolved continuum simulations. The simulations are able to reproduce the electrochemical behavior at elevated temperature favorably, however fail completely to predict the performance loss at room temperature. Extensive parameter studies were performed to identify the limiting processes, and as a result, interface phenomena occurring at the cathode active material/solid-electrolyte interface were found to be the most probable cause for the low performance at room temperature. Furthermore, the simulations are used for a sound estimation of the optimization potential that can be realized with this type of cell, which provides important guidelines for future oxide based all-solid-state battery research and fabrication.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助QinQin采纳,获得10
刚刚
1秒前
暴富发布了新的文献求助10
1秒前
2秒前
CipherSage应助南瓜瓜瓜瓜采纳,获得10
2秒前
Dasiy给Dasiy的求助进行了留言
2秒前
3秒前
3秒前
Xnn关闭了Xnn文献求助
4秒前
JasonWu发布了新的文献求助10
4秒前
QinQin完成签到,获得积分10
4秒前
田様应助哆啦顺利毕业采纳,获得10
5秒前
氙气飘飘完成签到 ,获得积分10
5秒前
LELE发布了新的文献求助10
6秒前
善学以致用应助wen采纳,获得10
7秒前
吃鸡蛋不吃鸡蛋黄完成签到,获得积分10
8秒前
iamchens发布了新的文献求助10
8秒前
9秒前
9秒前
llg发布了新的文献求助10
10秒前
11秒前
12秒前
NexusExplorer应助畅彤采纳,获得10
12秒前
Ava应助秋光采纳,获得10
14秒前
乐观小蕊发布了新的文献求助10
15秒前
胖飞飞完成签到,获得积分10
15秒前
15秒前
潘科学家发布了新的文献求助10
16秒前
gery完成签到,获得积分10
18秒前
18秒前
Singularity应助zzz采纳,获得10
18秒前
爆米花应助子然采纳,获得10
18秒前
19秒前
zhiqing发布了新的文献求助10
20秒前
20秒前
21秒前
港a发布了新的文献求助10
21秒前
豆子应助lijingwen采纳,获得10
21秒前
21秒前
NexusExplorer应助lijingwen采纳,获得10
21秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071903
求助须知:如何正确求助?哪些是违规求助? 2725788
关于积分的说明 7491264
捐赠科研通 2373147
什么是DOI,文献DOI怎么找? 1258476
科研通“疑难数据库(出版商)”最低求助积分说明 610277
版权声明 596944