Green and Facile Preparation of Regular Lignin Nanoparticles with High Yield and Their Natural Broad-Spectrum Sunscreens

木质素 纳米颗粒 产量(工程) 化学工程 绿色化学 醋酸酐 材料科学 溶剂 试剂 化学 纳米材料 催化作用 色散(光学) 超声 有机化学 纳米技术 反应机理 复合材料 光学 物理 工程类
作者
Bing Wang,Dan Sun,Han-Min Wang,Tong‐Qi Yuan,Run‐Cang Sun
出处
期刊:ACS Sustainable Chemistry & Engineering [American Chemical Society]
卷期号:7 (2): 2658-2666 被引量:190
标识
DOI:10.1021/acssuschemeng.8b05735
摘要

Lignin nanoparticles offer a way for a high value use of the renewable resources. However, there are few green and facile methods so far for producing lignin nanoparticles with both high yield and regular shape. In this study, lignin was first modified through a microwave acetylation process without any catalysts and solvents other than acetic anhydride, which acted as both reaction reagent and dispersion solvent. Subsequently, the regular lignin nanoparticles with a high yield were prepared by a solvent shifting combined ultrasound process. The lignin nanoparticles were rapidly formed without dialysis and easily separated by centrifugation; meanwhile, the used THF could be recycled and reused, which would simplify the process, reduce the cost, and realize the industrial scale-up production. The highest yield of lignin nanoparticles reached to 82.3% as the lignin initial concentration and the ultrasound intensity increased. Meanwhile, the ultrasound treatment improved the uniformity and dispersion of the nanoparticles. The structure transformation and the forming mechanism of lignin nanoparticles were investigated through various techniques. Furthermore, the UV absorbing ability of lignin nanoparticles was examined. In a more general plan, it was confirmed that the green chemistry principles could be realized in the development of more sustainable lignin nanomaterials with various potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
呆萌迎曼关注了科研通微信公众号
5秒前
思源应助easonchen12312采纳,获得10
7秒前
强博弈发布了新的文献求助10
8秒前
feng完成签到 ,获得积分10
8秒前
龙傲天发布了新的文献求助10
9秒前
10秒前
勤劳锦程完成签到 ,获得积分10
12秒前
小李子发布了新的文献求助10
13秒前
无语的秋蝶完成签到 ,获得积分10
14秒前
17秒前
18秒前
懵了完成签到,获得积分10
19秒前
20秒前
20秒前
龙傲天完成签到,获得积分10
22秒前
zzzzy完成签到,获得积分10
22秒前
sysm发布了新的文献求助10
22秒前
温柔凌晴发布了新的文献求助60
22秒前
科研通AI5应助Jjj采纳,获得10
24秒前
弦和发布了新的文献求助10
24秒前
我是老大应助陈橙橙采纳,获得10
24秒前
zzzzy发布了新的文献求助20
25秒前
呆萌迎曼发布了新的文献求助10
25秒前
31秒前
32秒前
Cloud发布了新的文献求助20
33秒前
弦和完成签到,获得积分10
34秒前
郭奕廷完成签到,获得积分10
34秒前
漫山完成签到,获得积分10
37秒前
124发布了新的文献求助10
37秒前
39秒前
Akim应助布布采纳,获得10
39秒前
阿肯李发布了新的文献求助10
40秒前
41秒前
CodeCraft应助tidongzhiwu采纳,获得10
42秒前
43秒前
Jjj发布了新的文献求助10
43秒前
MX001完成签到,获得积分10
43秒前
露西发布了新的文献求助30
44秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475587
求助须知:如何正确求助?哪些是违规求助? 3067456
关于积分的说明 9104167
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699197