NHP: Neural Hypergraph Link Prediction

超链接 链接(几何体) 成对比较 超图 计算机科学 卷积神经网络 图形 特征(语言学) 人工神经网络 人工智能 机器学习 理论计算机科学 数据挖掘 数学 网页 组合数学 语言学 万维网 哲学 计算机网络
作者
Naganand Yadati,Vikram Nitin,Madhav Nimishakavi,Prateek Yadav,Anand Louis,Partha Talukdar
标识
DOI:10.1145/3340531.3411870
摘要

Link prediction insimple graphs is a fundamental problem in which new links between vertices are predicted based on the observed structure of the graph. However, in many real-world applications, there is a need to model relationships among vertices that go beyond pairwise associations. For example, in a chemical reaction, relationship among the reactants and products is inherently higher-order. Additionally, there is a need to represent the direction from reactants to products. Hypergraphs provide a natural way to represent such complex higher-order relationships. Graph Convolutional Network (GCN) has recently emerged as a powerful deep learning-based approach for link prediction over simple graphs. However, their suitability for link prediction in hypergraphs is underexplored -- we fill this gap in this paper and propose Neural Hyperlink Predictor (NHP). NHP adapts GCNs for link prediction in hypergraphs. We propose two variants of NHP -- NHP-U and NHP-D -- for link prediction over undirected and directed hypergraphs, respectively. To the best of our knowledge, NHP-D is the first-ever method for link prediction over directed hypergraphs. An important feature of NHP is that it can also be used for hyperlinks in which dissimilar vertices interact (e.g. acids reacting with bases). Another attractive feature of NHP is that it can be used to predict unseen hyperlinks at test time (inductive hyperlink prediction). Through extensive experiments on multiple real-world datasets, we show NHP's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pumpkin完成签到,获得积分10
1秒前
ludov完成签到,获得积分10
1秒前
1秒前
cy完成签到,获得积分10
2秒前
3秒前
3秒前
zorro3574完成签到,获得积分10
4秒前
Xdz完成签到 ,获得积分10
5秒前
忐忑的凌丝完成签到,获得积分10
5秒前
5秒前
个性的翠芙完成签到 ,获得积分10
5秒前
皮蛋瘦肉周完成签到,获得积分10
6秒前
6秒前
SYLH应助木木采纳,获得30
6秒前
ZJR发布了新的文献求助10
6秒前
goodsheep完成签到 ,获得积分10
6秒前
Dr_Zhang完成签到,获得积分10
7秒前
烟花应助科研通管家采纳,获得30
7秒前
852应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
白桃乌龙应助科研通管家采纳,获得10
8秒前
韩博完成签到,获得积分10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
伍绮彤完成签到,获得积分10
8秒前
8秒前
雨寒发布了新的文献求助20
9秒前
weske发布了新的文献求助10
9秒前
11秒前
独特元蝶发布了新的文献求助10
13秒前
13秒前
Lucas应助陈陈采纳,获得10
14秒前
星辰发布了新的文献求助10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144