Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE

拉普拉斯法 马尔科夫蒙特卡洛 环境科学 贝叶斯概率 数学 计量经济学 土壤科学 统计
作者
Xiaolin Sun,Budiman Minasny,Huili Wang,Yu-Guo Zhao,Gan‐Lin Zhang,Yunjin Wu
出处
期刊:Geoderma [Elsevier]
卷期号:384: 114808-114808 被引量:23
标识
DOI:10.1016/j.geoderma.2020.114808
摘要

The growing human population and demand for food have significantly impacted soil resources. Understanding the spatiotemporal change of soil conditions is important to support food production, environmental sustainability, and climate change adaptation. Nevertheless, spatiotemporal prediction of soil properties could be seriously influenced by the uncertainties of the data and model. Integrated Nested Laplace Approximation (INLA) with the Stochastic Partial Differential Equation (SPDE) was proposed as a general model that can account for the uncertainties in spatiotemporal soil modelling and prediction. INLA-SPDE has significant advantages in computation efficiency over commonly-used geostatistical methods with Markov Chain Monte Carlo. However, until now, only few pedometrics studies used it for soil spatial modelling. This study demonstrates an application of INLA-SPDE within a hierarchical spatiotemporal model for soil organic matter based on soil survey data collected in Jiangsu, China, during three periods, i.e., 1979–1982, 2000 and 2006–2007. Compared with updating digital soil maps using the Bayesian Maximum Entropy approach, the prediction generated using INLA-SPDE is more accurate. For example, the root mean square error using INLA-SPDE (i.e., 6.57 g kg−1) was reduced by 20% compared to the updating approach (i.e., 8.39 g kg−1). Moreover, accounting for sources of uncertainties made the prediction using INLA-SPDE more certain. Nevertheless, the uncertainty in the temporal prediction of soil change is still large due to the scarcity of data across the sampling periods. The INLA-SPDE model predicts much detailed spatiotemporal changes along the sampling periods. Therefore, this study recommends the use of INLA-SPDE within a hierarchical model as an effective method for studying spatiotemporal soil change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萨格发布了新的文献求助10
1秒前
1秒前
1秒前
貅璐璐发布了新的文献求助10
2秒前
2秒前
Lisa_Su_8055发布了新的文献求助10
2秒前
ouczl完成签到,获得积分10
2秒前
一切都会好起来的完成签到,获得积分10
4秒前
科研通AI5应助Songsong采纳,获得30
5秒前
李子韵应助sirhai采纳,获得10
5秒前
归仔完成签到,获得积分10
6秒前
傅宛白发布了新的文献求助10
6秒前
过时的机器猫完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI5应助Jonsnow采纳,获得10
9秒前
科研通AI5应助快乐小子采纳,获得10
9秒前
大胆凡英完成签到,获得积分20
9秒前
10秒前
11秒前
小天发布了新的文献求助10
12秒前
遥辉发布了新的文献求助20
12秒前
gnr2000发布了新的文献求助10
12秒前
12秒前
喵阿無完成签到,获得积分10
13秒前
14秒前
快乐小子完成签到,获得积分10
15秒前
15秒前
笑点低中心完成签到,获得积分10
15秒前
科研通AI2S应助75986686采纳,获得10
16秒前
喵阿無发布了新的文献求助10
16秒前
16秒前
16秒前
Yoisun发布了新的文献求助10
16秒前
bkagyin应助椰子采纳,获得10
17秒前
kryie完成签到,获得积分10
18秒前
liyuemao完成签到,获得积分10
18秒前
Tianju发布了新的文献求助10
18秒前
19秒前
大壮完成签到,获得积分20
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546689
求助须知:如何正确求助?哪些是违规求助? 3123769
关于积分的说明 9356697
捐赠科研通 2822394
什么是DOI,文献DOI怎么找? 1551413
邀请新用户注册赠送积分活动 723398
科研通“疑难数据库(出版商)”最低求助积分说明 713736