已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE

拉普拉斯法 马尔科夫蒙特卡洛 环境科学 贝叶斯概率 数学 计量经济学 土壤科学 统计
作者
Xiaolin Sun,Budiman Minasny,Huili Wang,Yu-Guo Zhao,Gan‐Lin Zhang,Yunjin Wu
出处
期刊:Geoderma [Elsevier]
卷期号:384: 114808-114808 被引量:23
标识
DOI:10.1016/j.geoderma.2020.114808
摘要

The growing human population and demand for food have significantly impacted soil resources. Understanding the spatiotemporal change of soil conditions is important to support food production, environmental sustainability, and climate change adaptation. Nevertheless, spatiotemporal prediction of soil properties could be seriously influenced by the uncertainties of the data and model. Integrated Nested Laplace Approximation (INLA) with the Stochastic Partial Differential Equation (SPDE) was proposed as a general model that can account for the uncertainties in spatiotemporal soil modelling and prediction. INLA-SPDE has significant advantages in computation efficiency over commonly-used geostatistical methods with Markov Chain Monte Carlo. However, until now, only few pedometrics studies used it for soil spatial modelling. This study demonstrates an application of INLA-SPDE within a hierarchical spatiotemporal model for soil organic matter based on soil survey data collected in Jiangsu, China, during three periods, i.e., 1979–1982, 2000 and 2006–2007. Compared with updating digital soil maps using the Bayesian Maximum Entropy approach, the prediction generated using INLA-SPDE is more accurate. For example, the root mean square error using INLA-SPDE (i.e., 6.57 g kg−1) was reduced by 20% compared to the updating approach (i.e., 8.39 g kg−1). Moreover, accounting for sources of uncertainties made the prediction using INLA-SPDE more certain. Nevertheless, the uncertainty in the temporal prediction of soil change is still large due to the scarcity of data across the sampling periods. The INLA-SPDE model predicts much detailed spatiotemporal changes along the sampling periods. Therefore, this study recommends the use of INLA-SPDE within a hierarchical model as an effective method for studying spatiotemporal soil change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
共享精神应助xujiejiuxi采纳,获得10
2秒前
还在考虑完成签到,获得积分10
5秒前
6秒前
7秒前
田家溢完成签到,获得积分10
9秒前
9秒前
嗯哼应助科研通管家采纳,获得20
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
9秒前
嗯哼应助科研通管家采纳,获得20
9秒前
9秒前
田家溢发布了新的文献求助10
11秒前
缓慢的煎饼完成签到 ,获得积分10
14秒前
nenoaowu发布了新的文献求助10
14秒前
科研通AI2S应助小汪爱学习采纳,获得10
16秒前
无限的可乐完成签到,获得积分10
17秒前
Rainbow完成签到 ,获得积分10
18秒前
yangon发布了新的文献求助10
18秒前
无极2023完成签到 ,获得积分10
19秒前
19秒前
jkl完成签到 ,获得积分10
20秒前
自由冰凡完成签到 ,获得积分10
21秒前
c2完成签到 ,获得积分10
22秒前
22秒前
CCYY完成签到 ,获得积分10
26秒前
26秒前
爆炸boom完成签到 ,获得积分10
27秒前
27秒前
yema完成签到 ,获得积分10
29秒前
大力世界发布了新的文献求助10
31秒前
小汪爱学习完成签到,获得积分20
34秒前
34秒前
yangon完成签到,获得积分20
37秒前
Vce April完成签到,获得积分10
38秒前
忧虑的羊发布了新的文献求助10
39秒前
大力世界完成签到,获得积分20
41秒前
48秒前
50秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880839
关于积分的说明 8217229
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377749
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314