材料科学
阴极
快离子导体
电化学
离子
离子键合
密度泛函理论
电解质
氧化还原
化学物理
分析化学(期刊)
电极
物理化学
化学
色谱法
计算化学
有机化学
冶金
作者
Jian Zhang,Yongchang Liu,Xudong Zhao,Lunhua He,Hui Liu,Yuzhu Song,Shengdong Sun,Qiang Li,Xianran Xing,Jun Chen
标识
DOI:10.1002/adma.201906348
摘要
Sodium-ion batteries (SIBs) have attracted incremental attention as a promising candidate for grid-scale energy-storage applications. To meet practical requirements, searching for new cathode materials with high energy density is of great importance. Herein, a novel Na superionic conductor (NASICON)-type Na4 MnCr(PO4 )3 is developed as a high-energy cathode for SIBs. The Na4 MnCr(PO4 )3 nanoparticles homogeneously embedded in a carbon matrix can present an extraordinary reversible capacity of 160.5 mA h g-1 with three-electron reaction at ≈3.53 V during the Na+ extraction/insertion process, realizing an unprecedentedly high energy density of 566.5 Wh kg-1 in the phosphate cathodes for SIBs. It is intriguing to reveal the underlying mechanism of the unique Mn2+ /Mn3+ , Mn3+ /Mn4+ , and Cr3+ /Cr4+ redox couples via X-ray absorption near-edge structure spectroscopy. The whole electrochemical reaction undergoes highly reversible single-phase and biphasic transitions with a moderate volume change of 7.7% through in situ X-ray diffraction and ex situ high-energy synchrotron X-ray diffraction. Combining density functional theory (DFT) calculations with the galvanostatic intermittent titration technique, the superior performance is ascribed to the low ionic-migration energy barrier and desirable Na-ion diffusion kinetics. The present work can offer a new insight into the design of multielectron-reaction cathode materials for SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI