材料科学
阴极
快离子导体
能量密度
钠
离子
电解质
磷酸盐
无机化学
电极
物理化学
工程物理
化学
工程类
有机化学
冶金
作者
Jian Zhang,Yongchang Liu,Xudong Zhao,Lunhua He,Hui Liu,Yuzhu Song,Shengdong Sun,Qiang Li,Xianran Xing,Jun Chen
标识
DOI:10.1002/adma.201906348
摘要
Abstract Sodium‐ion batteries (SIBs) have attracted incremental attention as a promising candidate for grid‐scale energy‐storage applications. To meet practical requirements, searching for new cathode materials with high energy density is of great importance. Herein, a novel Na superionic conductor (NASICON)‐type Na 4 MnCr(PO 4 ) 3 is developed as a high‐energy cathode for SIBs. The Na 4 MnCr(PO 4 ) 3 nanoparticles homogeneously embedded in a carbon matrix can present an extraordinary reversible capacity of 160.5 mA h g −1 with three‐electron reaction at ≈3.53 V during the Na + extraction/insertion process, realizing an unprecedentedly high energy density of 566.5 Wh kg −1 in the phosphate cathodes for SIBs. It is intriguing to reveal the underlying mechanism of the unique Mn 2+ /Mn 3+ , Mn 3+ /Mn 4+ , and Cr 3+ /Cr 4+ redox couples via X‐ray absorption near‐edge structure spectroscopy. The whole electrochemical reaction undergoes highly reversible single‐phase and biphasic transitions with a moderate volume change of 7.7% through in situ X‐ray diffraction and ex situ high‐energy synchrotron X‐ray diffraction. Combining density functional theory (DFT) calculations with the galvanostatic intermittent titration technique, the superior performance is ascribed to the low ionic‐migration energy barrier and desirable Na‐ion diffusion kinetics. The present work can offer a new insight into the design of multielectron‐reaction cathode materials for SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI