重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Personalized Federated Learning With Differential Privacy

差别隐私 计算机科学 众包 机器学习 用户建模 计算机安全 数据建模 人工智能 信息隐私 数据挖掘 万维网 用户界面 数据库 操作系统
作者
Rui Hu,Yuanxiong Guo,Hongning Li,Qingqi Pei,Yanmin Gong
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:7 (10): 9530-9539 被引量:250
标识
DOI:10.1109/jiot.2020.2991416
摘要

To provide intelligent and personalized services on smart devices, machine learning techniques have been widely used to learn from data, identify patterns, and make automated decisions. Machine learning processes typically require a large amount of representative data that are often collected through crowdsourcing from end users. However, user data could be sensitive in nature, and training machine learning models on these data may expose sensitive information of users, violating their privacy. Moreover, to meet the increasing demand of personalized services, these learned models should capture their individual characteristics. This article proposes a privacy-preserving approach for learning effective personalized models on distributed user data while guaranteeing the differential privacy of user data. Practical issues in a distributed learning system such as user heterogeneity are considered in the proposed approach. In addition, the convergence property and privacy guarantee of the proposed approach are rigorously analyzed. The experimental results on realistic mobile sensing data demonstrate that the proposed approach is robust to user heterogeneity and offers a good tradeoff between accuracy and privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AliceCute发布了新的文献求助10
刚刚
Huanglj完成签到,获得积分10
刚刚
刚刚
浮游应助好运6连采纳,获得10
1秒前
1秒前
2秒前
小马甲应助chxhwu采纳,获得10
2秒前
冷茗完成签到,获得积分10
2秒前
可爱的函函应助cc采纳,获得30
2秒前
kkk关闭了kkk文献求助
2秒前
Yu完成签到,获得积分10
2秒前
FKZoz发布了新的文献求助10
3秒前
3秒前
3秒前
Jane发布了新的文献求助10
4秒前
4秒前
义气完成签到,获得积分10
4秒前
罗博超发布了新的文献求助10
5秒前
Sunny发布了新的文献求助30
5秒前
令狐冲0401完成签到,获得积分10
5秒前
pluto应助高挑的乐珍采纳,获得10
6秒前
威武鞅发布了新的文献求助10
6秒前
正直丹寒完成签到,获得积分10
6秒前
资雁山发布了新的文献求助10
7秒前
7秒前
苹果发布了新的文献求助10
8秒前
8秒前
熙熙发布了新的文献求助10
8秒前
zh完成签到,获得积分10
8秒前
wang发布了新的文献求助10
9秒前
充电宝应助执着的梦菲采纳,获得10
9秒前
9秒前
独行侠发布了新的文献求助10
9秒前
超级砖家完成签到,获得积分10
9秒前
10秒前
10秒前
璐璇完成签到,获得积分10
10秒前
Jane完成签到,获得积分10
11秒前
猫猫爱吃煎饼完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465838
求助须知:如何正确求助?哪些是违规求助? 4570083
关于积分的说明 14322455
捐赠科研通 4496549
什么是DOI,文献DOI怎么找? 2463392
邀请新用户注册赠送积分活动 1452295
关于科研通互助平台的介绍 1427497