亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences

生物 公制(单位) 显微镜 人工智能 粒子(生态学) 图像复原 深度学习 图像(数学) 计算机视觉 图像质量 跟踪(教育) 钥匙(锁) 生物系统 模式识别(心理学) 计算机科学 图像处理 物理 光学 工程类 心理学 生态学 教育学 运营管理
作者
Paul Kefer,Fadil Iqbal,Maëlle Locatelli,Josh Lawrimore,Mengdi Zhang,Kerry Bloom,Keith Bonin,Pierre‐Alexandre Vidi,Jing Liu
出处
期刊:Molecular Biology of the Cell [American Society for Cell Biology]
卷期号:32 (9): 903-914 被引量:8
标识
DOI:10.1091/mbc.e20-11-0689
摘要

Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
animenz完成签到,获得积分10
3秒前
bkagyin应助忧虑的羊采纳,获得10
3秒前
perfect完成签到 ,获得积分10
5秒前
Able完成签到,获得积分10
7秒前
wanci应助时空星客采纳,获得10
10秒前
15秒前
lq8996完成签到 ,获得积分10
15秒前
Ning00000完成签到 ,获得积分10
16秒前
gege完成签到,获得积分10
18秒前
20秒前
joeqin完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
kkk完成签到 ,获得积分10
22秒前
23秒前
时空星客发布了新的文献求助10
27秒前
里vh发布了新的文献求助10
27秒前
忧虑的羊发布了新的文献求助10
28秒前
朴素梦蕊完成签到 ,获得积分10
30秒前
Mic应助tkx是流氓兔采纳,获得10
32秒前
FashionBoy应助奥一奥采纳,获得10
36秒前
李健的小迷弟应助lotus采纳,获得10
40秒前
40秒前
xx完成签到,获得积分10
41秒前
婷123发布了新的文献求助10
43秒前
44秒前
科研通AI6.1应助朝夕采纳,获得10
44秒前
赘婿应助gege采纳,获得10
47秒前
幽默的龙猫完成签到 ,获得积分10
55秒前
yanyan发布了新的文献求助20
56秒前
一期一会完成签到,获得积分10
1分钟前
1分钟前
852应助热情新蕾采纳,获得10
1分钟前
rrjl完成签到,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
tkx是流氓兔完成签到,获得积分10
1分钟前
默mo完成签到 ,获得积分10
1分钟前
1分钟前
婷123发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870591
求助须知:如何正确求助?哪些是违规求助? 6463951
关于积分的说明 15664463
捐赠科研通 4986675
什么是DOI,文献DOI怎么找? 2688931
邀请新用户注册赠送积分活动 1631313
关于科研通互助平台的介绍 1589367