Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences

生物 公制(单位) 显微镜 人工智能 粒子(生态学) 图像复原 深度学习 图像(数学) 计算机视觉 图像质量 跟踪(教育) 钥匙(锁) 生物系统 模式识别(心理学) 计算机科学 图像处理 物理 光学 工程类 运营管理 教育学 生态学 心理学
作者
Paul Kefer,Fadil Iqbal,Maëlle Locatelli,Josh Lawrimore,Mengdi Zhang,Kerry Bloom,Keith Bonin,Pierre‐Alexandre Vidi,Jing Liu
出处
期刊:Molecular Biology of the Cell [American Society for Cell Biology]
卷期号:32 (9): 903-914 被引量:8
标识
DOI:10.1091/mbc.e20-11-0689
摘要

Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虾仁发布了新的文献求助10
刚刚
王致远发布了新的文献求助10
1秒前
1秒前
1秒前
黄饱饱完成签到,获得积分10
1秒前
Wang完成签到,获得积分10
2秒前
am发布了新的文献求助10
3秒前
涵山发布了新的文献求助10
3秒前
CAOHOU举报你猜求助涉嫌违规
3秒前
4秒前
4秒前
TaoJ发布了新的文献求助10
4秒前
fang发布了新的文献求助10
5秒前
大模型应助樱悼柳雪采纳,获得10
6秒前
6秒前
7秒前
乐乐应助傲娇的曼香采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
活力惜寒完成签到,获得积分10
9秒前
qq完成签到,获得积分10
9秒前
小二郎应助gyr采纳,获得20
10秒前
搞怪莫茗发布了新的文献求助10
10秒前
复杂沧海发布了新的文献求助10
10秒前
11秒前
Nancy发布了新的文献求助30
11秒前
12秒前
Gaoge完成签到,获得积分10
12秒前
12秒前
lmd完成签到,获得积分10
13秒前
13秒前
XY完成签到,获得积分10
14秒前
李健春发布了新的文献求助10
14秒前
只然完成签到,获得积分10
15秒前
高晨旭完成签到 ,获得积分10
16秒前
FashionBoy应助暴躁的阁采纳,获得10
16秒前
小汉子完成签到,获得积分10
16秒前
17秒前
忧郁含海完成签到,获得积分10
18秒前
思源应助kagaminelen采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600