Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences

生物 公制(单位) 显微镜 人工智能 粒子(生态学) 图像复原 深度学习 图像(数学) 计算机视觉 图像质量 跟踪(教育) 钥匙(锁) 生物系统 模式识别(心理学) 计算机科学 图像处理 物理 光学 工程类 运营管理 教育学 生态学 心理学
作者
Paul Kefer,Fadil Iqbal,Maëlle Locatelli,Josh Lawrimore,Mengdi Zhang,Kerry Bloom,Keith Bonin,Pierre‐Alexandre Vidi,Jing Liu
出处
期刊:Molecular Biology of the Cell [American Society for Cell Biology]
卷期号:32 (9): 903-914 被引量:8
标识
DOI:10.1091/mbc.e20-11-0689
摘要

Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
路漫漫其修远兮完成签到,获得积分10
刚刚
GGZ发布了新的文献求助10
刚刚
啦啦啦发布了新的文献求助10
刚刚
1秒前
阿坤完成签到,获得积分10
2秒前
dd发布了新的文献求助10
3秒前
桐桐应助小智采纳,获得10
3秒前
九川完成签到,获得积分10
3秒前
混子完成签到,获得积分10
3秒前
3秒前
4秒前
Wang完成签到,获得积分10
4秒前
星辰大海应助Ll采纳,获得10
4秒前
Jasper应助妮儿采纳,获得10
5秒前
tododoto完成签到,获得积分10
5秒前
5秒前
淙淙柔水完成签到,获得积分0
5秒前
杳鸢应助mc1220采纳,获得10
5秒前
rosa完成签到,获得积分10
5秒前
郑小七发布了新的文献求助10
6秒前
Tianxu Li完成签到,获得积分10
7秒前
7秒前
九川发布了新的文献求助10
8秒前
Lucas应助无限的隶采纳,获得10
8秒前
胡雅琴完成签到,获得积分10
8秒前
sakurai完成签到,获得积分10
9秒前
清歌扶酒关注了科研通微信公众号
9秒前
二尖瓣后叶举报ww求助涉嫌违规
9秒前
烟花应助轻松笙采纳,获得10
9秒前
沉默凡桃完成签到,获得积分10
10秒前
10秒前
luuuuuing发布了新的文献求助30
10秒前
啦啦啦完成签到,获得积分10
10秒前
小可发布了新的文献求助10
10秒前
11秒前
LKGG完成签到 ,获得积分10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759