Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences

生物 公制(单位) 显微镜 人工智能 粒子(生态学) 图像复原 深度学习 图像(数学) 计算机视觉 图像质量 跟踪(教育) 钥匙(锁) 生物系统 模式识别(心理学) 计算机科学 图像处理 物理 光学 工程类 运营管理 教育学 生态学 心理学
作者
Paul Kefer,Fadil Iqbal,Maëlle Locatelli,Josh Lawrimore,Mengdi Zhang,Kerry Bloom,Keith Bonin,Pierre‐Alexandre Vidi,Jing Liu
出处
期刊:Molecular Biology of the Cell [American Society for Cell Biology]
卷期号:32 (9): 903-914 被引量:8
标识
DOI:10.1091/mbc.e20-11-0689
摘要

Particle tracking in living systems requires low light exposure and short exposure times to avoid phototoxicity and photobleaching and to fully capture particle motion with high-speed imaging. Low-excitation light comes at the expense of tracking accuracy. Image restoration methods based on deep learning dramatically improve the signal-to-noise ratio in low-exposure data sets, qualitatively improving the images. However, it is not clear whether images generated by these methods yield accurate quantitative measurements such as diffusion parameters in (single) particle tracking experiments. Here, we evaluate the performance of two popular deep learning denoising software packages for particle tracking, using synthetic data sets and movies of diffusing chromatin as biological examples. With synthetic data, both supervised and unsupervised deep learning restored particle motions with high accuracy in two-dimensional data sets, whereas artifacts were introduced by the denoisers in three-dimensional data sets. Experimentally, we found that, while both supervised and unsupervised approaches improved tracking results compared with the original noisy images, supervised learning generally outperformed the unsupervised approach. We find that nicer-looking image sequences are not synonymous with more precise tracking results and highlight that deep learning algorithms can produce deceiving artifacts with extremely noisy images. Finally, we address the challenge of selecting parameters to train convolutional neural networks by implementing a frugal Bayesian optimizer that rapidly explores multidimensional parameter spaces, identifying networks yielding optimal particle tracking accuracy. Our study provides quantitative outcome measures of image restoration using deep learning. We anticipate broad application of this approach to critically evaluate artificial intelligence solutions for quantitative microscopy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
axiao完成签到,获得积分10
1秒前
jl完成签到,获得积分10
1秒前
2秒前
感动芷珍完成签到 ,获得积分10
2秒前
饱满飞荷完成签到,获得积分10
3秒前
3秒前
冲鸭完成签到,获得积分10
3秒前
沈言应助zrz采纳,获得10
4秒前
yar应助感动的忆枫采纳,获得10
4秒前
清风完成签到 ,获得积分10
4秒前
5秒前
CodeCraft应助jl采纳,获得10
5秒前
奋斗的绝悟完成签到 ,获得积分10
5秒前
12发布了新的文献求助10
6秒前
幽默的问梅完成签到,获得积分10
7秒前
英姑应助欢喜的皮卡丘采纳,获得10
7秒前
华仔应助老实的夜白采纳,获得10
8秒前
cfcforever完成签到 ,获得积分10
8秒前
xxx完成签到,获得积分10
9秒前
爱吃香菜发布了新的文献求助10
9秒前
Timon完成签到,获得积分10
9秒前
9秒前
愤怒的梦曼完成签到,获得积分10
12秒前
ppprotein完成签到,获得积分10
13秒前
感动的忆枫完成签到,获得积分10
14秒前
酷波er应助mmm采纳,获得10
14秒前
14秒前
17秒前
称心靖雁发布了新的文献求助10
18秒前
20秒前
20秒前
老衲应助bernie1023采纳,获得10
20秒前
hyhyhyhy发布了新的文献求助10
21秒前
21秒前
ZJPPPP发布了新的文献求助10
23秒前
FUN发布了新的文献求助10
23秒前
24秒前
25秒前
水合氯醛发布了新的文献求助10
25秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943193
关于积分的说明 8512994
捐赠科研通 2618403
什么是DOI,文献DOI怎么找? 1431061
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649540