A machine learning approach to modelling the spatial variations in the daily fine particulate matter (PM2.5) and nitrogen dioxide (NO2) of Shanghai, China

环境科学 微粒 共线性 空气污染 空间变异性 随机森林 回归分析 线性回归 土地利用 气象学 统计 地理 数学 计算机科学 机器学习 生态学 生物
作者
Xinyi Song,Ya Gao,Yubo Peng,Sen Huang,Chao Liu,Zhong‐Ren Peng
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE Publishing]
卷期号:48 (3): 467-483 被引量:3
标识
DOI:10.1177/2399808320975031
摘要

It is challenging to forecast high-resolution spatial-temporal patterns of intra-urban air pollution and identify impacting factors at the regional scale. Studies have attempted to capture features of air pollutants such as fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) using land use regression models, but this method overlooks the multi-collinearity of factors, non-linear correlations between factors and air pollutants, and it fails to perform well when processing daily data. However, machine learning is a feasible approach for establishing persuasive intra-urban air pollution daily variation models. In this article, random forest is utilised to establish intra-urban PM 2.5 and NO 2 spatial-temporal variation models and is compared to the traditional land use regression method. Taking the city of Shanghai, China as the case area, 36 station-measured daily records in two and a half years of PM 2.5 and NO 2 concentrations were collected. And over 80 different predictors associated with meteorological and geographical conditions, transportation, community population density, land use and points of interest are used to construct the land use regression and random forest models. Results from the two methods are compared and impacting factors identified. Explained variance ( R 2 ) is used to quantify and compare model performance. The final land use regression model explains 49.3% and 42.2% of the spatial variation in ambient PM 2.5 and NO 2 , respectively, whereas the random forest model explains 78.1% and 60.5% of the variance. Regression mappings for unsampled sites on a grid pattern of 1 km × 1 km are also implemented. The random forest model is shown to perform much better than the land use regression model. In general, the findings suggest that the random forest approach offers a robust improvement in predicting performance compared to the land use regression model in estimating daily spatial variations in ambient PM 2.5 and NO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ran发布了新的文献求助10
2秒前
隐形曼青应助Della采纳,获得10
3秒前
yitai完成签到,获得积分10
3秒前
jjjjj发布了新的文献求助30
4秒前
杜兰特发布了新的文献求助20
5秒前
7秒前
木心应助负责小蜜蜂采纳,获得10
7秒前
Rondab应助负责小蜜蜂采纳,获得30
7秒前
shenzhou9发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
11秒前
rrgogo发布了新的文献求助10
11秒前
11秒前
酷波er应助展希希采纳,获得10
12秒前
慕青应助xn201120采纳,获得10
13秒前
七七完成签到,获得积分10
13秒前
Della发布了新的文献求助10
14秒前
gogoyoco发布了新的文献求助10
14秒前
符小俊完成签到,获得积分10
16秒前
旷野发布了新的文献求助10
16秒前
mammer完成签到,获得积分10
17秒前
左肩微笑完成签到,获得积分10
17秒前
来来完成签到,获得积分10
19秒前
Cochrane完成签到,获得积分0
19秒前
Hey关闭了Hey文献求助
20秒前
jjjjj完成签到,获得积分20
21秒前
21秒前
8R60d8应助yitai采纳,获得10
22秒前
科研助手6应助yitai采纳,获得10
22秒前
脑洞疼应助man采纳,获得10
22秒前
来来发布了新的文献求助10
22秒前
yizhiGao应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
JamesPei应助科研通管家采纳,获得10
24秒前
柯一一应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176