A machine learning approach to modelling the spatial variations in the daily fine particulate matter (PM2.5) and nitrogen dioxide (NO2) of Shanghai, China

环境科学 微粒 共线性 空气污染 空间变异性 随机森林 回归分析 线性回归 土地利用 气象学 统计 地理 数学 计算机科学 机器学习 生态学 生物
作者
Xinyi Song,Ya Gao,Yubo Peng,Sen Huang,Chao Liu,Zhong‐Ren Peng
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:48 (3): 467-483 被引量:3
标识
DOI:10.1177/2399808320975031
摘要

It is challenging to forecast high-resolution spatial-temporal patterns of intra-urban air pollution and identify impacting factors at the regional scale. Studies have attempted to capture features of air pollutants such as fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) using land use regression models, but this method overlooks the multi-collinearity of factors, non-linear correlations between factors and air pollutants, and it fails to perform well when processing daily data. However, machine learning is a feasible approach for establishing persuasive intra-urban air pollution daily variation models. In this article, random forest is utilised to establish intra-urban PM 2.5 and NO 2 spatial-temporal variation models and is compared to the traditional land use regression method. Taking the city of Shanghai, China as the case area, 36 station-measured daily records in two and a half years of PM 2.5 and NO 2 concentrations were collected. And over 80 different predictors associated with meteorological and geographical conditions, transportation, community population density, land use and points of interest are used to construct the land use regression and random forest models. Results from the two methods are compared and impacting factors identified. Explained variance ( R 2 ) is used to quantify and compare model performance. The final land use regression model explains 49.3% and 42.2% of the spatial variation in ambient PM 2.5 and NO 2 , respectively, whereas the random forest model explains 78.1% and 60.5% of the variance. Regression mappings for unsampled sites on a grid pattern of 1 km × 1 km are also implemented. The random forest model is shown to perform much better than the land use regression model. In general, the findings suggest that the random forest approach offers a robust improvement in predicting performance compared to the land use regression model in estimating daily spatial variations in ambient PM 2.5 and NO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChangSZ应助speedness采纳,获得10
刚刚
自由基不能聚合完成签到,获得积分10
刚刚
shone发布了新的文献求助10
1秒前
烟花应助yug采纳,获得10
1秒前
科研cc发布了新的文献求助10
1秒前
你仔细听发布了新的文献求助10
1秒前
路之遥兮发布了新的文献求助10
2秒前
一平发布了新的文献求助10
2秒前
jerry完成签到,获得积分20
2秒前
搞怪便当完成签到,获得积分10
2秒前
2秒前
2秒前
布丁仔完成签到,获得积分10
3秒前
3秒前
3秒前
Hu111完成签到,获得积分10
3秒前
3秒前
关琦完成签到,获得积分10
3秒前
4秒前
ZTT完成签到,获得积分20
4秒前
苗条的一一完成签到,获得积分10
4秒前
lxh2424发布了新的文献求助10
4秒前
4秒前
4秒前
dsjlove发布了新的文献求助10
5秒前
忧郁的续发布了新的文献求助10
5秒前
5秒前
科研r完成签到,获得积分10
5秒前
牧楊人完成签到 ,获得积分10
5秒前
Lucas应助勾勾1991采纳,获得10
6秒前
研友_VZG7GZ应助勾勾1991采纳,获得20
6秒前
充电宝应助勾勾1991采纳,获得20
6秒前
6秒前
Lucas应助勾勾1991采纳,获得10
6秒前
汉堡包应助jerry采纳,获得10
6秒前
习习应助changmengying采纳,获得10
7秒前
7秒前
高贵花瓣完成签到,获得积分10
7秒前
161319141完成签到 ,获得积分10
7秒前
丰富的世界完成签到 ,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672