亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning approach to modelling the spatial variations in the daily fine particulate matter (PM2.5) and nitrogen dioxide (NO2) of Shanghai, China

环境科学 微粒 共线性 空气污染 空间变异性 随机森林 回归分析 线性回归 土地利用 气象学 统计 地理 数学 计算机科学 机器学习 生态学 生物
作者
Xinyi Song,Ya Gao,Yubo Peng,Sen Huang,Chao Liu,Zhong‐Ren Peng
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:48 (3): 467-483 被引量:3
标识
DOI:10.1177/2399808320975031
摘要

It is challenging to forecast high-resolution spatial-temporal patterns of intra-urban air pollution and identify impacting factors at the regional scale. Studies have attempted to capture features of air pollutants such as fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) using land use regression models, but this method overlooks the multi-collinearity of factors, non-linear correlations between factors and air pollutants, and it fails to perform well when processing daily data. However, machine learning is a feasible approach for establishing persuasive intra-urban air pollution daily variation models. In this article, random forest is utilised to establish intra-urban PM 2.5 and NO 2 spatial-temporal variation models and is compared to the traditional land use regression method. Taking the city of Shanghai, China as the case area, 36 station-measured daily records in two and a half years of PM 2.5 and NO 2 concentrations were collected. And over 80 different predictors associated with meteorological and geographical conditions, transportation, community population density, land use and points of interest are used to construct the land use regression and random forest models. Results from the two methods are compared and impacting factors identified. Explained variance ( R 2 ) is used to quantify and compare model performance. The final land use regression model explains 49.3% and 42.2% of the spatial variation in ambient PM 2.5 and NO 2 , respectively, whereas the random forest model explains 78.1% and 60.5% of the variance. Regression mappings for unsampled sites on a grid pattern of 1 km × 1 km are also implemented. The random forest model is shown to perform much better than the land use regression model. In general, the findings suggest that the random forest approach offers a robust improvement in predicting performance compared to the land use regression model in estimating daily spatial variations in ambient PM 2.5 and NO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
18秒前
甜蜜的翠柏完成签到,获得积分10
20秒前
细心的冷雪完成签到,获得积分10
52秒前
1分钟前
小蘑菇应助鲜于元龙采纳,获得10
1分钟前
1分钟前
StayGolDay完成签到,获得积分10
1分钟前
1分钟前
英喆完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
迅速灵竹完成签到 ,获得积分10
1分钟前
1分钟前
鲜于元龙发布了新的文献求助10
2分钟前
2分钟前
CASLSD完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
2分钟前
传奇3应助鲜于元龙采纳,获得10
2分钟前
2分钟前
3分钟前
幽默涵易发布了新的文献求助10
3分钟前
在水一方应助nhh采纳,获得10
3分钟前
nhh给nhh的求助进行了留言
3分钟前
3分钟前
3分钟前
xdjack发布了新的文献求助10
3分钟前
3分钟前
鲜于元龙发布了新的文献求助10
3分钟前
略略略发布了新的文献求助10
3分钟前
3分钟前
爱静静完成签到,获得积分0
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
hahahan完成签到 ,获得积分10
4分钟前
李健的粉丝团团长应助xun采纳,获得10
4分钟前
4分钟前
xdjack发布了新的文献求助10
4分钟前
nhh给nhh的求助进行了留言
4分钟前
4分钟前
4分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335359
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614028
捐赠科研通 2643363
什么是DOI,文献DOI怎么找? 1447420
科研通“疑难数据库(出版商)”最低求助积分说明 670597
邀请新用户注册赠送积分活动 658974