亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A machine learning approach to modelling the spatial variations in the daily fine particulate matter (PM2.5) and nitrogen dioxide (NO2) of Shanghai, China

环境科学 微粒 共线性 空气污染 空间变异性 随机森林 回归分析 线性回归 土地利用 气象学 统计 地理 数学 计算机科学 机器学习 生态学 生物
作者
Xinyi Song,Ya Gao,Yubo Peng,Sen Huang,Chao Liu,Zhong‐Ren Peng
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE]
卷期号:48 (3): 467-483 被引量:3
标识
DOI:10.1177/2399808320975031
摘要

It is challenging to forecast high-resolution spatial-temporal patterns of intra-urban air pollution and identify impacting factors at the regional scale. Studies have attempted to capture features of air pollutants such as fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) using land use regression models, but this method overlooks the multi-collinearity of factors, non-linear correlations between factors and air pollutants, and it fails to perform well when processing daily data. However, machine learning is a feasible approach for establishing persuasive intra-urban air pollution daily variation models. In this article, random forest is utilised to establish intra-urban PM 2.5 and NO 2 spatial-temporal variation models and is compared to the traditional land use regression method. Taking the city of Shanghai, China as the case area, 36 station-measured daily records in two and a half years of PM 2.5 and NO 2 concentrations were collected. And over 80 different predictors associated with meteorological and geographical conditions, transportation, community population density, land use and points of interest are used to construct the land use regression and random forest models. Results from the two methods are compared and impacting factors identified. Explained variance ( R 2 ) is used to quantify and compare model performance. The final land use regression model explains 49.3% and 42.2% of the spatial variation in ambient PM 2.5 and NO 2 , respectively, whereas the random forest model explains 78.1% and 60.5% of the variance. Regression mappings for unsampled sites on a grid pattern of 1 km × 1 km are also implemented. The random forest model is shown to perform much better than the land use regression model. In general, the findings suggest that the random forest approach offers a robust improvement in predicting performance compared to the land use regression model in estimating daily spatial variations in ambient PM 2.5 and NO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助30
20秒前
Raunio完成签到,获得积分10
22秒前
23秒前
40秒前
LJP发布了新的文献求助10
48秒前
Ava应助科研通管家采纳,获得10
52秒前
yuchuan应助科研通管家采纳,获得10
52秒前
yuchuan应助科研通管家采纳,获得10
52秒前
54秒前
iiii发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI6应助LJP采纳,获得10
1分钟前
1分钟前
伽古拉40k完成签到,获得积分10
1分钟前
paperandpen发布了新的文献求助10
1分钟前
MchemG完成签到,获得积分0
1分钟前
LJP完成签到,获得积分10
1分钟前
paperandpen完成签到,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
若谷叻完成签到,获得积分10
2分钟前
Chris发布了新的文献求助10
2分钟前
hll完成签到,获得积分10
2分钟前
Chris完成签到,获得积分10
2分钟前
yuchuan应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
无花果应助矮小的祥采纳,获得10
2分钟前
脑洞疼应助优美芸采纳,获得10
2分钟前
三毛完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
矮小的祥发布了新的文献求助10
4分钟前
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449954
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265132
捐赠科研通 4481121
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445480
关于科研通互助平台的介绍 1421323