A machine learning approach to modelling the spatial variations in the daily fine particulate matter (PM2.5) and nitrogen dioxide (NO2) of Shanghai, China

环境科学 微粒 共线性 空气污染 空间变异性 随机森林 回归分析 线性回归 土地利用 气象学 统计 地理 数学 计算机科学 机器学习 生态学 生物
作者
Xinyi Song,Ya Gao,Yubo Peng,Sen Huang,Chao Liu,Zhong‐Ren Peng
出处
期刊:Environment And Planning B: Urban Analytics And City Science [SAGE Publishing]
卷期号:48 (3): 467-483 被引量:3
标识
DOI:10.1177/2399808320975031
摘要

It is challenging to forecast high-resolution spatial-temporal patterns of intra-urban air pollution and identify impacting factors at the regional scale. Studies have attempted to capture features of air pollutants such as fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) using land use regression models, but this method overlooks the multi-collinearity of factors, non-linear correlations between factors and air pollutants, and it fails to perform well when processing daily data. However, machine learning is a feasible approach for establishing persuasive intra-urban air pollution daily variation models. In this article, random forest is utilised to establish intra-urban PM 2.5 and NO 2 spatial-temporal variation models and is compared to the traditional land use regression method. Taking the city of Shanghai, China as the case area, 36 station-measured daily records in two and a half years of PM 2.5 and NO 2 concentrations were collected. And over 80 different predictors associated with meteorological and geographical conditions, transportation, community population density, land use and points of interest are used to construct the land use regression and random forest models. Results from the two methods are compared and impacting factors identified. Explained variance ( R 2 ) is used to quantify and compare model performance. The final land use regression model explains 49.3% and 42.2% of the spatial variation in ambient PM 2.5 and NO 2 , respectively, whereas the random forest model explains 78.1% and 60.5% of the variance. Regression mappings for unsampled sites on a grid pattern of 1 km × 1 km are also implemented. The random forest model is shown to perform much better than the land use regression model. In general, the findings suggest that the random forest approach offers a robust improvement in predicting performance compared to the land use regression model in estimating daily spatial variations in ambient PM 2.5 and NO 2 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GDY发布了新的文献求助10
刚刚
luoyulin发布了新的文献求助10
刚刚
ztt发布了新的文献求助10
刚刚
1秒前
1233330完成签到,获得积分10
1秒前
科研靓仔完成签到,获得积分10
1秒前
wen完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
黑黑发布了新的文献求助10
4秒前
4秒前
晚风挽清欢完成签到 ,获得积分10
6秒前
高兴的易形完成签到 ,获得积分10
6秒前
123131发布了新的文献求助10
6秒前
背后访风完成签到 ,获得积分10
6秒前
cc发布了新的文献求助10
7秒前
细心青烟完成签到 ,获得积分20
7秒前
luoyulin完成签到,获得积分10
7秒前
7秒前
7秒前
Sun完成签到,获得积分20
7秒前
大马哈鱼完成签到 ,获得积分10
7秒前
露露发布了新的文献求助10
7秒前
7秒前
8秒前
饱满以松发布了新的文献求助10
8秒前
8秒前
8秒前
JX发布了新的文献求助10
8秒前
鱼粥很好完成签到,获得积分10
8秒前
王哪跑12发布了新的文献求助10
9秒前
9秒前
Bingo发布了新的文献求助20
10秒前
蓝胖子完成签到,获得积分20
10秒前
10秒前
10秒前
帅气的奔驰完成签到,获得积分10
10秒前
科研通AI6应助猫的淡淡采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403