Flame Temperature Prediction Using Machine Learning Model

计算机科学 温度测量 机器学习 人工智能 热力学 物理
作者
Goutam Agrawal,Rutuparnna Mishra,Anshit Ransingh,Sujata Chakravarty
标识
DOI:10.1109/indiscon50162.2020.00042
摘要

The intensity or amount of heat present in any material, substance, or object is known as temperature. The process of measuring temperature is a tiresome and complex task from any visible heat source. The process of measuring temperature is known as thermometry. It plays a vital role in various industrial and manufacturing processes. There are several devices or gadgets present which are used for measuring temperature like a thermistor, Resistance Temperature Detector (RTD), infrared thermometer, thermocouples, pyrometers, etc. Every temperature measuring instrument has its demerits. While measuring temperature in some devices, one must be very alert because it is a necessity to check that the temperature of the material or substance should be less than or equal to the instrument temperature. In some instruments, the high temperature reduces productivity, and the efficiency of the sensors present in it. Some devices face the drawback of difference in temperature because in such types of devices there is a threshold temperature. If the temperature exceeds the threshold temperature in such a case, the measured temperature will differ with the temperature of the system. Under such circumstances, it will deviate from the original heat transfer property. To overcome all these drawbacks a machine learning model is proposed to detect approx. temperature using the color-temperature correlation approach. In this proposed system, histogram backprojection is used for pre-processing of the input image to derive the color of the flame. To predict the temperature, Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been used and compared. Simulation results show that Support Vector Machine outperforms Artificial Neural Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的dd完成签到 ,获得积分10
刚刚
跳跃的访琴完成签到 ,获得积分10
6秒前
寻寻觅觅冷冷清清完成签到 ,获得积分10
8秒前
kais完成签到 ,获得积分10
10秒前
onevip完成签到,获得积分10
14秒前
17秒前
勤恳的书文完成签到 ,获得积分10
18秒前
神可馨完成签到 ,获得积分10
20秒前
小周不吃粥完成签到 ,获得积分10
24秒前
斯文败类应助DduYy采纳,获得10
30秒前
幼儿园小霸王完成签到 ,获得积分10
30秒前
haochi完成签到,获得积分10
33秒前
陈皮完成签到 ,获得积分10
34秒前
lizef完成签到 ,获得积分10
39秒前
柯科研完成签到 ,获得积分10
41秒前
奋斗奋斗再奋斗完成签到,获得积分10
44秒前
AXQ完成签到,获得积分10
48秒前
大模型应助哇哇脸采纳,获得10
52秒前
zwzxtx完成签到 ,获得积分10
1分钟前
西洲完成签到 ,获得积分10
1分钟前
mark33442完成签到,获得积分10
1分钟前
auraro完成签到 ,获得积分10
1分钟前
研友Bn完成签到 ,获得积分10
1分钟前
哇哇脸完成签到,获得积分20
1分钟前
mumuyayaguoguo完成签到 ,获得积分10
1分钟前
善良元芹完成签到 ,获得积分10
1分钟前
nanfeng完成签到 ,获得积分10
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
深情安青应助thchiang采纳,获得10
1分钟前
穆一手完成签到 ,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
活泼的寒安完成签到 ,获得积分10
1分钟前
destiny完成签到 ,获得积分10
1分钟前
高高的天亦完成签到 ,获得积分10
1分钟前
鞑靼完成签到 ,获得积分10
2分钟前
meiyang完成签到 ,获得积分10
2分钟前
大方思柔完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研小白完成签到 ,获得积分10
2分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7922018
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443