Flame Temperature Prediction Using Machine Learning Model

计算机科学 温度测量 机器学习 人工智能 热力学 物理
作者
Goutam Agrawal,Rutuparnna Mishra,Anshit Ransingh,Sujata Chakravarty
标识
DOI:10.1109/indiscon50162.2020.00042
摘要

The intensity or amount of heat present in any material, substance, or object is known as temperature. The process of measuring temperature is a tiresome and complex task from any visible heat source. The process of measuring temperature is known as thermometry. It plays a vital role in various industrial and manufacturing processes. There are several devices or gadgets present which are used for measuring temperature like a thermistor, Resistance Temperature Detector (RTD), infrared thermometer, thermocouples, pyrometers, etc. Every temperature measuring instrument has its demerits. While measuring temperature in some devices, one must be very alert because it is a necessity to check that the temperature of the material or substance should be less than or equal to the instrument temperature. In some instruments, the high temperature reduces productivity, and the efficiency of the sensors present in it. Some devices face the drawback of difference in temperature because in such types of devices there is a threshold temperature. If the temperature exceeds the threshold temperature in such a case, the measured temperature will differ with the temperature of the system. Under such circumstances, it will deviate from the original heat transfer property. To overcome all these drawbacks a machine learning model is proposed to detect approx. temperature using the color-temperature correlation approach. In this proposed system, histogram backprojection is used for pre-processing of the input image to derive the color of the flame. To predict the temperature, Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been used and compared. Simulation results show that Support Vector Machine outperforms Artificial Neural Network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bofu发布了新的文献求助10
1秒前
cstp完成签到,获得积分10
2秒前
2秒前
2秒前
就爱吃土豆完成签到,获得积分0
3秒前
宇婷发布了新的文献求助10
3秒前
毛毛毛毛小毛完成签到,获得积分10
3秒前
天天快乐应助Jason采纳,获得10
4秒前
5秒前
serendipity发布了新的文献求助10
6秒前
bofu发布了新的文献求助10
8秒前
8秒前
ding应助淡淡夕阳采纳,获得10
9秒前
9秒前
9秒前
华仔应助nimonimo采纳,获得10
9秒前
9秒前
9秒前
iroko完成签到,获得积分10
10秒前
10秒前
10秒前
12秒前
宇婷完成签到,获得积分10
12秒前
Yesitong发布了新的文献求助10
13秒前
bofu发布了新的文献求助10
13秒前
后山种仙草完成签到,获得积分10
13秒前
14秒前
x菜鸡博士应助serendipity采纳,获得10
14秒前
星辰大海应助cstp采纳,获得10
15秒前
深情安青应助潇洒飞丹采纳,获得30
16秒前
yongjie发布了新的文献求助10
16秒前
调皮鱼发布了新的文献求助10
16秒前
17秒前
17秒前
cis2014发布了新的文献求助10
17秒前
汤成莉完成签到 ,获得积分10
18秒前
bofu发布了新的文献求助10
18秒前
思源应助YXH采纳,获得10
18秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105