Clinical correlation of cadherin‐17 marker with advanced tumor stages and poor prognosis of cholangiocarcinoma

医学 列线图 内科学 肿瘤科 比例危险模型 生物标志物 组织微阵列 临床意义 队列 免疫组织化学 多元分析 癌症 回顾性队列研究 阶段(地层学) 病理 生存分析 古生物学 化学 生物 生物化学
作者
Bohao Zheng,Sheng Shen,Kwong‐Fai Wong,Zijun Gong,Wentao Sun,Xiaojian Ni,Jiwen Wang,Meiyu Hu,Han Liu,Xiaoling Ni,Houbao Liu,John M. Luk,Tao Suo
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:123 (5): 1253-1262 被引量:6
标识
DOI:10.1002/jso.26399
摘要

Abstract Background and Objectives In this retrospective study, we examined the CA17 tissue expression and analyzed its clinical significance in cholangiocarcinoma (CCA). Materials and Methods Immunohistochemistry was performed to assess CA17 expression on tissue microarrays in a training cohort enrolling 120 CCA patients and a validation cohort comprising 60 CCA patients. Image pro plus was applied to score the staining intensity and expression level of CA17 marker. Kaplan‐Meier analysis, Cox's proportional hazards regression, and nomogram were applied to evaluate the prognostic significance of CA17. Results CA17 cancer biomarker over‐expression was significantly observed in CCA compared to their non‐tumor counterparts, and positively correlated with aggressive tumor phenotypes, like lymph node metastasis. Meanwhile, patients with high expression of CA17 correlated with worse postoperative overall survival (OS) and recurrence‐free survival. Besides, multivariate analysis identified that CA17 expression was an independent prognostic factor for cholangiocarcinoma patients, which indicated that the CA17 could be more efficient than serum CA19‐9 in predicting the OS of CCA patients. Notably, the nomogram integrating CA17 expression had better prognostic performance as compared with current TNM staging systems. Conclusion CA17 was an independent adverse prognostic factor for CCA patients’ survival, which may serve as a promising prognostic biomarker for CCA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆松发布了新的文献求助10
刚刚
陈小鬼发布了新的文献求助10
1秒前
大佬鼠的朋友完成签到,获得积分10
2秒前
xiaogui完成签到,获得积分10
3秒前
Kemmy发布了新的文献求助10
4秒前
大个应助SOLKATT采纳,获得10
7秒前
VvV完成签到,获得积分10
8秒前
8秒前
Zr完成签到,获得积分10
9秒前
guard发布了新的文献求助10
13秒前
pluto应助陈小鬼采纳,获得10
13秒前
科研通AI5应助暴躁的初夏采纳,获得10
13秒前
14秒前
14秒前
14秒前
15秒前
我是老大应助ShellyHan采纳,获得10
16秒前
慕青应助swordlee采纳,获得10
17秒前
BSDL发布了新的文献求助10
19秒前
chemhub完成签到,获得积分10
19秒前
louqianqian完成签到,获得积分20
20秒前
20秒前
20秒前
20秒前
求助大神发布了新的文献求助10
20秒前
上官若男应助accepted采纳,获得10
21秒前
21秒前
22秒前
22秒前
zzz完成签到,获得积分10
23秒前
Ava应助louqianqian采纳,获得30
23秒前
DCP发布了新的文献求助10
23秒前
俭朴三问完成签到,获得积分10
23秒前
桐桐应助BSDL采纳,获得10
23秒前
24秒前
喵miao发布了新的文献求助10
24秒前
25秒前
xxx发布了新的文献求助10
25秒前
静途发布了新的文献求助10
26秒前
Too完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555360
求助须知:如何正确求助?哪些是违规求助? 3130973
关于积分的说明 9389383
捐赠科研通 2830472
什么是DOI,文献DOI怎么找? 1556047
邀请新用户注册赠送积分活动 726376
科研通“疑难数据库(出版商)”最低求助积分说明 715738