Pedestrian Dead Reckoning With Wearable Sensors: A Systematic Review

可穿戴计算机 计算机科学 航位推算 全球定位系统 行人 软件部署 可穿戴技术 阶跃检测 过程(计算) 光学(聚焦) 实时计算 工程类 嵌入式系统 电信 运输工程 操作系统 光学 物理
作者
Xinyu Hou,Jeroen Bergmann
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (1): 143-152 被引量:91
标识
DOI:10.1109/jsen.2020.3014955
摘要

Pedestrian Dead Reckoning (PDR) is the process of calculating one's current location by using the previously known position, and advancing that position over time using established or estimated speeds and trajectories (or alternatively stride lengths and directions). PDR plays an important role in modern life, including tracking locations of people and objects whenever GPS is not available. Self-contained PDR systems do not require an infrastructure, thus they can be used for rapid deployment in situations such as search and rescue, disaster relief or medical emergencies. Wearable sensors are often applied in self-contained PDR, but implementation varies in terms of the number, type and location of sensors used. Many algorithms are designed for PDR in order to reduce the error or drift of the final estimate, with various levels of success. There is a lack of comparison between these different methods and this systematic review of PDR for wearable devices provides a comprehensive overview that can inform further design optimizations. The aim of this article is to assess the quality of all available PDR literature with a focus on wearable sensors. It provides an outline of the state-of-the-art in the field by comparing the accuracy of different sensor layouts and algorithms. Further directions of research are suggested based on these results. This study also highlights the need for more standardised and robust assessment protocols to capture real-world tracking performance of PDR methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助MADKAI采纳,获得10
刚刚
李健应助MADKAI采纳,获得10
刚刚
烟花应助MADKAI采纳,获得20
刚刚
香蕉觅云应助MADKAI采纳,获得10
刚刚
科研通AI2S应助MADKAI采纳,获得10
刚刚
Singularity应助MADKAI采纳,获得10
刚刚
1秒前
1秒前
赘婿应助GGZ采纳,获得10
1秒前
阿盛完成签到,获得积分10
1秒前
1秒前
怕孤单的含羞草完成签到 ,获得积分10
2秒前
Muuu发布了新的文献求助10
2秒前
仁爱的乐枫完成签到,获得积分10
3秒前
3秒前
金润完成签到,获得积分10
4秒前
ZZ完成签到,获得积分10
4秒前
AteeqBaloch发布了新的文献求助10
5秒前
PaulLao完成签到,获得积分10
5秒前
5秒前
fleee发布了新的文献求助10
5秒前
5秒前
6秒前
Luyao发布了新的文献求助10
6秒前
海派Hi完成签到 ,获得积分10
6秒前
依依完成签到 ,获得积分10
7秒前
李健的小迷弟应助库外采纳,获得10
7秒前
yi完成签到 ,获得积分10
7秒前
kbj发布了新的文献求助10
7秒前
9秒前
佳言2009完成签到,获得积分10
10秒前
汉堡包应助漂亮的初蓝采纳,获得10
10秒前
hohokuz发布了新的文献求助10
11秒前
莫里完成签到,获得积分10
11秒前
zxz发布了新的文献求助10
11秒前
Luyao完成签到,获得积分10
12秒前
12秒前
12秒前
马甲完成签到,获得积分10
12秒前
科研通AI5应助xdf采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762