Use of machine learning approach to predict depression in the elderly in China: A longitudinal study

萧条(经济学) 纵向研究 中国 心理学 精神科 人工智能 临床心理学 医学 计算机科学 地理 宏观经济学 病理 经济 考古
作者
Dai Su,Xingyu Zhang,Kevin He,Yingchun Chen
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:282: 289-298 被引量:93
标识
DOI:10.1016/j.jad.2020.12.160
摘要

Early detection of potential depression among elderly people is conducive for timely preventive intervention and clinical care to improve quality of life. Therefore, depression prediction considering sequential progression patterns in elderly needs to be further explored.We selected 1,538 elderly people from Chinese Longitudinal Healthy Longevity Study (CLHLS) wave 3-7 survey. Long short-term memory (LSTM) and six machine learning (ML) models were used to predict different depression risk factors and the depression risks in the elderly population in the next two years. Receiver operating curve (ROC) and decision curve analysis (DCA) were used to evaluate the prediction accuracy of the reference model and ML models.The area under the ROC curve (AUC) values of logistic regression with lasso regularisation (AUC=0.629, p-value=0.020) was the highest among ML models. DCA results showed that the net benefit of six ML models was similar (threshold: 0.00-0.10), the net benefit of lasso regression was the largest (threshold: 0.10-0.17 and 0.22-0.25), and the net benefit of DNN was the largest (threshold: 0.17-0.22 and 0.25-0.40). In two ML models, activities of daily living (ADL)/ instrumental ADL (IADL), self-rated health, marital status, arthritis, and number of cohabiting were the most important predictors for elderly with depression.The retrospective waves used in the LSTM model need to be further increased.The decision support system based on the proposed LSTM+ML model may be very valuable for doctors, nurses and community medical providers for early diagnosis and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然秋蝶关注了科研通微信公众号
刚刚
iii发布了新的文献求助10
1秒前
mumu发布了新的文献求助10
1秒前
1秒前
1秒前
gmc完成签到 ,获得积分10
2秒前
小橙子完成签到,获得积分10
2秒前
2秒前
tkzzz完成签到,获得积分10
2秒前
博修发布了新的文献求助30
3秒前
霏冉完成签到,获得积分10
3秒前
3秒前
旭爸爸发布了新的文献求助10
3秒前
医路有你完成签到 ,获得积分10
3秒前
HJJHJH发布了新的文献求助10
3秒前
mmc完成签到,获得积分10
4秒前
Felice完成签到,获得积分10
4秒前
4秒前
和abc完成签到,获得积分10
5秒前
KanmenRider完成签到,获得积分10
5秒前
刘子发布了新的文献求助10
6秒前
古德辣克完成签到,获得积分10
6秒前
6秒前
停婷完成签到,获得积分10
6秒前
NINISO完成签到,获得积分10
7秒前
梁家瑜完成签到,获得积分10
7秒前
搜集达人应助刘岩松采纳,获得10
7秒前
遐蝶发布了新的文献求助10
7秒前
橙子完成签到,获得积分10
8秒前
Oo。发布了新的文献求助50
8秒前
FashionBoy应助旭爸爸采纳,获得10
8秒前
8秒前
科研通AI2S应助YYY采纳,获得30
9秒前
9秒前
流白发布了新的文献求助10
10秒前
yan完成签到,获得积分10
10秒前
wx发布了新的文献求助10
10秒前
10秒前
欢呼灰狼完成签到,获得积分10
10秒前
领导范儿应助黄晓荷采纳,获得10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650