Explainable AI for medical imaging: deep-learning CNN ensemble for classification of estrogen receptor status from breast MRI

卷积神经网络 人工智能 计算机科学 学习迁移 深度学习 对比度(视觉) 可视化 乳房磁振造影 集合(抽象数据类型) 接收机工作特性 边距(机器学习) 模式识别(心理学) 机器学习 乳腺摄影术 乳腺癌 医学 内科学 癌症 程序设计语言
作者
Zachary Papanastasopoulos,Ravi K. Samala,Heang Ping Chan,Lubomir M. Hadjiiski,Chintana Paramagul,Mark A. Helvie,Colleen H. Neal
出处
期刊:Medical Imaging 2020: Computer-Aided Diagnosis 被引量:35
标识
DOI:10.1117/12.2549298
摘要

Deep-learning convolutional neural networks (DCNNs) are the most commonly used approach in medical image analysis tasks at present; however, they have largely been used as black-box predictors, lacking explanation for the underlying reasons. Explainable artificial intelligence (XAI) is an emerging subfield of AI seeking to understand how models make their decisions. In this work, we applied XAI visualization to gain an insight into the features learned by a DCNN trained to classify estrogen receptor status (ER+ vs ER-) based on dynamic contrast-enhanced magnetic resonance imaging (DCEMRI) of the breast. Our data set contained 1395 ER+ regions-of-interest (ROIs) and 729 ER- ROIs from 148 patients, each with a pre-contrast scan and a minimum of two post-contrast scans. We developed a novel transfer-trained dual-domain DCNN architecture derived from the AlexNet model trained on ImageNet data that received the spatial (across the volume) and dynamic (across the acquisition sequence) components of each DCE-MRI ROI as input. The network’s performance was evaluated with the area under the receiver operating characteristic curve (AUC) from leave-one-case-out crossvalidation. To visualize the DCNN learning, we applied XAI techniques, including the Integrated Gradients attribution method and the SmoothGrad noise reduction algorithm, to the ROIs from the training set. We observed that our DCNN learned relevant features from the spatial and dynamic domains, but there were differences in the contributing features from the two domains. We also visualized DCNN learning from irrelevant features resulting from pre-processing artifacts. These observations motivate new approaches to pre-processing our data and training our DCNN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧的寻双完成签到,获得积分10
刚刚
坚果应助jj采纳,获得30
刚刚
1秒前
1秒前
商洪涛发布了新的文献求助10
1秒前
爆米花应助葳蕤采纳,获得10
1秒前
李帆发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
鲤鱼小蕾完成签到,获得积分10
4秒前
4秒前
耶耶发布了新的文献求助10
4秒前
烟花应助科研小小采纳,获得10
4秒前
4秒前
6秒前
淡然冬灵发布了新的文献求助30
7秒前
ddddcccdd发布了新的文献求助10
7秒前
深情安青应助地平线采纳,获得10
8秒前
虚心的念文完成签到,获得积分10
8秒前
荣荣酱完成签到 ,获得积分10
8秒前
温暖的雨旋完成签到,获得积分10
8秒前
大气的念薇完成签到 ,获得积分10
9秒前
Rixxed发布了新的文献求助30
9秒前
科目三应助张瑞雪采纳,获得10
9秒前
隐形曼青应助a7489420采纳,获得10
10秒前
好的完成签到 ,获得积分10
10秒前
sadsnake发布了新的文献求助30
11秒前
霸气雅旋完成签到,获得积分20
12秒前
传奇3应助闾丘惜寒采纳,获得10
12秒前
12秒前
12秒前
深情安青应助在下吴某采纳,获得10
12秒前
ddddcccdd完成签到,获得积分20
12秒前
曙光完成签到,获得积分10
14秒前
14秒前
再吃亿口完成签到,获得积分20
14秒前
15秒前
不朽阳神完成签到,获得积分10
15秒前
Rixxed完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481670
求助须知:如何正确求助?哪些是违规求助? 3071801
关于积分的说明 9123736
捐赠科研通 2763459
什么是DOI,文献DOI怎么找? 1516547
邀请新用户注册赠送积分活动 701593
科研通“疑难数据库(出版商)”最低求助积分说明 700453