清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

How far can we trust forestry estimates from low-density LiDAR acquisitions? The Cutfoot Sioux experimental forest (MN, USA) case study

森林资源清查 激光雷达 断面积 点云 遥感 激光扫描 树(集合论) 环境科学 随机森林 森林结构 地理 林业 计算机科学 森林经营 数学 激光器 考古 机器学习 数学分析 物理 光学 天蓬 计算机视觉
作者
E. Borgogno Mondino,Vanina Fissore,Michael J. Falkowski,Brian J. Palik
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:41 (12): 4551-4569 被引量:11
标识
DOI:10.1080/01431161.2020.1723173
摘要

Aerial discrete return LiDAR (Light Detection And Ranging) technology (ALS – Aerial Laser Scanner) is now widely used for forest characterization due to its high accuracy in measuring vertical and horizontal forest structure. Random and systematic errors can still occur and these affect the native point cloud, ultimately degrading ALS data accuracy, especially when adopting datasets that were not natively designed for forest applications. A detailed understanding of how uncertainty of ALS data could affect the accuracy of derivable forest metrics (e.g. tree height, stem diameter, basal area) is required, looking for eventual error biases that can be possibly modelled to improve final accuracy. In this work a low-density ALS dataset, originally acquired by the State of Minnesota (USA) for non-forestry related purposes (i.e. topographic mapping), was processed attempting to characterize forest inventory parameters for the Cutfoot Sioux Experimental Forest (north-central Minnesota, USA). Since accuracy of estimates strictly depends on the applied species-specific dendrometric models a first required step was to map tree species over the forest. A rough classification, aiming at separating conifers from broadleaf, was achieved by processing a Landsat 8 OLI (Operational Land Imager) scene. ALS-derived forest metrics initially greatly overestimated those measured at the ground in 230 plots. Conversely, ALS-derived tree density was greatly underestimated. To reduce ALS uncertainty, trees belonging to the dominated plane were removed from the ground dataset, assuming that they could not properly be detected by low-density ALS measures. Consequently, MAE (Mean Absolute Error) values significantly decreased to 4.0 m for tree height and to 0.19 cm for diameter estimates. Remaining discrepancies were related to a bias affecting the native ALS point cloud, which was modelled and removed. Final MAE values were 1.32 m for tree height, 0.08 m for diameter, 8.5 m2 ha−1 for basal area, and 0.06 m for quadratic mean diameter. Specifically focusing on tree height and diameter estimates, the significance of differences between ground and ALS estimates was tested relative to the expected 'best accuracy'. Results showed that after correction: 94.35% of tree height differences were lower than the corresponding reference value (2.86 m); 70% of tree diameter differences were lower than the corresponding reference value (4.5 cm for conifers and 6.8 cm for broadleaf). Finally, forest parameters were computed for the whole Cutfoot Sioux Experimental Forest. Main findings include: 1) all forest estimates based on a low-density ALS point cloud can be derived at plot level and not at a tree level; 2) tree height estimates obtained by low-density ALS point clouds at the plot level are highly reasonably accurate only after testing and modelling eventual error bias; 3) diameter, basal area, and quadratic mean diameter estimates have large uncertainties, suggesting the need for a higher point density and, probably, a better mapping of tree species (if possible) than achieved with a remote sensing-based approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
MAY完成签到,获得积分10
5秒前
6秒前
MAY发布了新的文献求助10
8秒前
xiaoyi完成签到 ,获得积分10
35秒前
侠客完成签到 ,获得积分10
40秒前
xxc完成签到 ,获得积分10
42秒前
研友_08oa3n完成签到 ,获得积分10
49秒前
洁净的静芙完成签到 ,获得积分10
53秒前
烟花应助MAY采纳,获得10
58秒前
wujiwuhui完成签到 ,获得积分10
59秒前
小瓶盖完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得20
1分钟前
眯眯眼的安雁完成签到 ,获得积分10
2分钟前
花花521完成签到,获得积分10
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
dashi完成签到 ,获得积分10
2分钟前
隐形曼青应助zzzzzer0采纳,获得10
2分钟前
陈好好完成签到 ,获得积分10
2分钟前
草拟大坝完成签到 ,获得积分0
2分钟前
zzzzzer0完成签到,获得积分10
2分钟前
2分钟前
zzzzzer0发布了新的文献求助10
2分钟前
Dong完成签到 ,获得积分10
2分钟前
可夫司机完成签到 ,获得积分10
2分钟前
艾斯巍峨儿完成签到 ,获得积分10
2分钟前
桐桐应助实验狗采纳,获得10
2分钟前
HJJHJH完成签到,获得积分20
3分钟前
HJJHJH发布了新的文献求助80
3分钟前
3分钟前
完美世界应助zzzzzer0采纳,获得10
3分钟前
实验狗发布了新的文献求助10
3分钟前
qq完成签到 ,获得积分10
3分钟前
墨墨完成签到,获得积分10
3分钟前
星辰完成签到 ,获得积分10
3分钟前
研友_Z7grXZ完成签到,获得积分10
3分钟前
3分钟前
研友_Z7grXZ发布了新的文献求助10
3分钟前
vitamin完成签到 ,获得积分10
4分钟前
HEIKU应助羞涩的妙菱采纳,获得10
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773684
求助须知:如何正确求助?哪些是违规求助? 3319183
关于积分的说明 10193524
捐赠科研通 3033864
什么是DOI,文献DOI怎么找? 1664811
邀请新用户注册赠送积分活动 796305
科研通“疑难数据库(出版商)”最低求助积分说明 757416