Background-modelling techniques for foreground detection and Tracking using Gaussian Mixture Model

背景减法 计算机科学 人工智能 卡尔曼滤波器 计算机视觉 混合模型 前景检测 跟踪(教育) 帧(网络) 目标检测 特征(语言学) 特征提取 视频跟踪 模式识别(心理学) 对象(语法) 像素 心理学 教育学 电信 语言学 哲学
作者
R Meghana,Yojan Chitkara,S M Apoorva,Mohana
标识
DOI:10.1109/iccmc.2019.8819825
摘要

Background Modelling and Foreground detection in sports has been achieved by cleverly developing a model of a background from a video by deducing knowledge from frames and comparing this model to every subsequent frame and subtracting the background region from it, hence leaving the foreground detected. This output from GMM background subtraction is fed into the feature extraction algorithm, which segregates the players based on teams. By extracting information of primary colors from each frame, the design of the algorithm based on the color of preference is done. Tracking algorithms Kalman and extended Kalman Filters help to predict and correct the location of players and in correctly estimating their trajectory on the field. Challenges such as shadowing, occlusions and illumination changes are addressed. The designed algorithms are tested against a set of performance parameters for the following datasets (Norway and FIFA) using MATLAB (2017b) and the inferences are respectively made. Object detection, motion detection and Kalman filter algorithms are implemented and the observed results are 100%, 84% and 100% accuracy respectively. With the results quantification and performance analysis, it is observed that with the decrease in contrast between player jerseys a decrease in detection accuracy occurs and with players crowded regions on the field and occluded players a decrease in tracking accuracy was observed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助鸡蛋灌饼与掉渣饼采纳,获得10
刚刚
刚刚
1秒前
Criminology34应助二五九采纳,获得10
3秒前
晚星发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
星空发布了新的文献求助10
8秒前
文献发布了新的文献求助30
10秒前
11秒前
11秒前
12秒前
14秒前
15秒前
Rachel完成签到,获得积分10
16秒前
codwest完成签到,获得积分10
16秒前
17秒前
17秒前
越旻完成签到,获得积分10
18秒前
zxj完成签到,获得积分10
18秒前
18秒前
喜欢猫发布了新的文献求助10
18秒前
酷炫的爆米花完成签到,获得积分10
19秒前
李爱国应助西海沉采纳,获得10
19秒前
Orange应助方法采纳,获得10
19秒前
19秒前
沉静亿先完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
研友_5Zl9D8发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
24秒前
24秒前
烂漫的煎饼完成签到 ,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690