Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset

计算机科学 人工智能 深度学习 DNA甲基化 人工神经网络 神经影像学 特征选择 基因 机器学习 计算生物学 数据挖掘 生物信息学 基因表达 生物 神经科学 生物化学
作者
Chihyun Park,Jihwan Ha,Sang‐Hyun Park
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:140: 112873-112873 被引量:98
标识
DOI:10.1016/j.eswa.2019.112873
摘要

The molecular mechanism of Alzheimer's disease (AD) has not been clearly revealed and there is no clinically reliable genetic risk factor. Therefore, diagnosis of AD has been mostly performed by analyzing brain images such as magnetic resonance imaging and neuropsychological tests. Identifying the molecular-level mechanism of AD has been lacking data owing to the difficulty of sampling in the posterior brains of normal and AD patients; however, recent studies have produced and analyzed large-scale omics data for brain areas such as prefrontal cortex. Therefore, it is necessary to develop AD diagnosis or prediction methods based on these data. This paper proposed a deep learning-based model that can predict AD using large-scale gene expression and DNA methylation data. The most challenging problem in constructing a model to diagnose AD based on the multi-omics dataset is how to integrate different omics data and how to deal with high-dimensional and low-sample-size data. To solve this problem, we proposed a novel but simple approach to reduce the number of features based on a differentially expressed gene and a differentially methylated position in the multi-omics dataset. Moreover, we developed a deep neural network-based prediction model that improves performance compared to that of conventional machine learning algorithms. The feature selection method and the prediction model presented in this paper outperformed conventional machine learning algorithms, which utilize typical dimension reduction methods. In addition, we demonstrated that integrating gene expression and DNA methylation data could improve the prediction accuracy. https://github.com/ChihyunPark/DNN_for_ADprediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
克克完成签到 ,获得积分20
4秒前
海中有月完成签到 ,获得积分10
5秒前
6秒前
7秒前
zzzzzzzzzzzzx发布了新的文献求助10
7秒前
Ff发布了新的文献求助10
9秒前
浮游应助董ddd采纳,获得10
11秒前
小筱完成签到,获得积分10
11秒前
emeqwq完成签到,获得积分10
14秒前
15秒前
Lucas应助君无邪采纳,获得10
16秒前
THEmorning7完成签到 ,获得积分10
17秒前
18秒前
融小葵完成签到,获得积分10
18秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
核桃发布了新的文献求助10
24秒前
wyt完成签到,获得积分10
24秒前
rrrrlc发布了新的文献求助10
25秒前
27秒前
时尚的初柔完成签到,获得积分10
27秒前
小于发布了新的文献求助10
27秒前
28秒前
28秒前
Violet完成签到 ,获得积分10
30秒前
我是老大应助Lelepok采纳,获得10
31秒前
丘比特应助凶狠的慕儿采纳,获得10
31秒前
31秒前
君无邪发布了新的文献求助10
31秒前
zj3tears发布了新的文献求助10
32秒前
深情安青应助小于采纳,获得10
32秒前
董ddd完成签到,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
Letters from Rewi Alley to Ida Pruitt, 1954-1964, vol. 1 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968042
求助须知:如何正确求助?哪些是违规求助? 4225521
关于积分的说明 13159751
捐赠科研通 4012405
什么是DOI,文献DOI怎么找? 2195570
邀请新用户注册赠送积分活动 1208979
关于科研通互助平台的介绍 1123023