已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset

计算机科学 人工智能 深度学习 DNA甲基化 人工神经网络 神经影像学 特征选择 基因 机器学习 计算生物学 数据挖掘 生物信息学 基因表达 生物 神经科学 生物化学
作者
Chihyun Park,Jihwan Ha,Sang‐Hyun Park
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:140: 112873-112873 被引量:98
标识
DOI:10.1016/j.eswa.2019.112873
摘要

The molecular mechanism of Alzheimer's disease (AD) has not been clearly revealed and there is no clinically reliable genetic risk factor. Therefore, diagnosis of AD has been mostly performed by analyzing brain images such as magnetic resonance imaging and neuropsychological tests. Identifying the molecular-level mechanism of AD has been lacking data owing to the difficulty of sampling in the posterior brains of normal and AD patients; however, recent studies have produced and analyzed large-scale omics data for brain areas such as prefrontal cortex. Therefore, it is necessary to develop AD diagnosis or prediction methods based on these data. This paper proposed a deep learning-based model that can predict AD using large-scale gene expression and DNA methylation data. The most challenging problem in constructing a model to diagnose AD based on the multi-omics dataset is how to integrate different omics data and how to deal with high-dimensional and low-sample-size data. To solve this problem, we proposed a novel but simple approach to reduce the number of features based on a differentially expressed gene and a differentially methylated position in the multi-omics dataset. Moreover, we developed a deep neural network-based prediction model that improves performance compared to that of conventional machine learning algorithms. The feature selection method and the prediction model presented in this paper outperformed conventional machine learning algorithms, which utilize typical dimension reduction methods. In addition, we demonstrated that integrating gene expression and DNA methylation data could improve the prediction accuracy. https://github.com/ChihyunPark/DNN_for_ADprediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
刚刚
小西米完成签到 ,获得积分10
刚刚
愉快山雁完成签到,获得积分10
1秒前
Zz完成签到 ,获得积分10
7秒前
13秒前
单纯的电灯胆完成签到,获得积分10
14秒前
慢慢发布了新的文献求助10
17秒前
why完成签到 ,获得积分10
21秒前
7Steven7完成签到 ,获得积分10
21秒前
22秒前
yttang完成签到 ,获得积分10
22秒前
zoe发布了新的文献求助10
27秒前
斯文败类应助杜兰特采纳,获得10
35秒前
耶耶完成签到 ,获得积分10
36秒前
sss完成签到 ,获得积分10
37秒前
星辰大海完成签到 ,获得积分10
38秒前
lhw发布了新的文献求助10
41秒前
tjnksy完成签到,获得积分10
45秒前
45秒前
芽芽豆完成签到 ,获得积分10
48秒前
50秒前
杜兰特发布了新的文献求助10
52秒前
Lucas完成签到,获得积分10
52秒前
sorawing完成签到,获得积分10
53秒前
Amadeus发布了新的文献求助10
54秒前
zoe发布了新的文献求助30
1分钟前
1分钟前
墨辰完成签到 ,获得积分10
1分钟前
孤独箴言发布了新的文献求助10
1分钟前
陈晨完成签到,获得积分10
1分钟前
真的不会完成签到,获得积分10
1分钟前
岳小龙完成签到 ,获得积分10
1分钟前
Fanfan完成签到 ,获得积分10
1分钟前
天明发布了新的文献求助10
1分钟前
微笑冰棍完成签到 ,获得积分10
1分钟前
孝顺的尔丝完成签到,获得积分10
1分钟前
Orange应助普通西瓜采纳,获得10
1分钟前
仁爱水之完成签到 ,获得积分10
1分钟前
lhw发布了新的文献求助10
1分钟前
姜sir完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963148
求助须知:如何正确求助?哪些是违规求助? 3509019
关于积分的说明 11144885
捐赠科研通 3242052
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621