Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset

计算机科学 人工智能 深度学习 DNA甲基化 人工神经网络 神经影像学 特征选择 基因 机器学习 计算生物学 数据挖掘 生物信息学 基因表达 生物 神经科学 生物化学
作者
Chihyun Park,Jihwan Ha,Sang‐Hyun Park
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:140: 112873-112873 被引量:98
标识
DOI:10.1016/j.eswa.2019.112873
摘要

The molecular mechanism of Alzheimer's disease (AD) has not been clearly revealed and there is no clinically reliable genetic risk factor. Therefore, diagnosis of AD has been mostly performed by analyzing brain images such as magnetic resonance imaging and neuropsychological tests. Identifying the molecular-level mechanism of AD has been lacking data owing to the difficulty of sampling in the posterior brains of normal and AD patients; however, recent studies have produced and analyzed large-scale omics data for brain areas such as prefrontal cortex. Therefore, it is necessary to develop AD diagnosis or prediction methods based on these data. This paper proposed a deep learning-based model that can predict AD using large-scale gene expression and DNA methylation data. The most challenging problem in constructing a model to diagnose AD based on the multi-omics dataset is how to integrate different omics data and how to deal with high-dimensional and low-sample-size data. To solve this problem, we proposed a novel but simple approach to reduce the number of features based on a differentially expressed gene and a differentially methylated position in the multi-omics dataset. Moreover, we developed a deep neural network-based prediction model that improves performance compared to that of conventional machine learning algorithms. The feature selection method and the prediction model presented in this paper outperformed conventional machine learning algorithms, which utilize typical dimension reduction methods. In addition, we demonstrated that integrating gene expression and DNA methylation data could improve the prediction accuracy. https://github.com/ChihyunPark/DNN_for_ADprediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的兔子关注了科研通微信公众号
刚刚
1秒前
酷波er应助111采纳,获得10
5秒前
丘比特应助tkp采纳,获得10
6秒前
6秒前
9秒前
1762120发布了新的文献求助10
10秒前
Ricky小强完成签到,获得积分10
11秒前
留意完成签到 ,获得积分10
11秒前
彩色的沂完成签到,获得积分10
12秒前
12秒前
俭朴的可冥应助自觉闭月采纳,获得10
12秒前
wanci应助萤火虫采纳,获得10
13秒前
科研通AI2S应助諵十一采纳,获得10
13秒前
李宏梅完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
16秒前
zg发布了新的文献求助10
17秒前
pluto应助狄百招采纳,获得10
18秒前
tutu发布了新的文献求助10
18秒前
taoze发布了新的文献求助10
19秒前
泽栋发布了新的文献求助10
19秒前
20秒前
李爱国应助张博采纳,获得10
20秒前
颀一一完成签到,获得积分10
21秒前
21秒前
22秒前
owoow发布了新的文献求助10
23秒前
23秒前
高源完成签到,获得积分20
23秒前
Skywalker完成签到,获得积分10
24秒前
25秒前
YZT8848完成签到,获得积分10
26秒前
26秒前
27秒前
tkp发布了新的文献求助10
28秒前
今后应助泽栋采纳,获得10
28秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344