Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset

计算机科学 人工智能 深度学习 DNA甲基化 人工神经网络 神经影像学 特征选择 基因 机器学习 计算生物学 数据挖掘 生物信息学 基因表达 生物 神经科学 生物化学
作者
Chihyun Park,Jihwan Ha,Sang‐Hyun Park
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:140: 112873-112873 被引量:98
标识
DOI:10.1016/j.eswa.2019.112873
摘要

The molecular mechanism of Alzheimer's disease (AD) has not been clearly revealed and there is no clinically reliable genetic risk factor. Therefore, diagnosis of AD has been mostly performed by analyzing brain images such as magnetic resonance imaging and neuropsychological tests. Identifying the molecular-level mechanism of AD has been lacking data owing to the difficulty of sampling in the posterior brains of normal and AD patients; however, recent studies have produced and analyzed large-scale omics data for brain areas such as prefrontal cortex. Therefore, it is necessary to develop AD diagnosis or prediction methods based on these data. This paper proposed a deep learning-based model that can predict AD using large-scale gene expression and DNA methylation data. The most challenging problem in constructing a model to diagnose AD based on the multi-omics dataset is how to integrate different omics data and how to deal with high-dimensional and low-sample-size data. To solve this problem, we proposed a novel but simple approach to reduce the number of features based on a differentially expressed gene and a differentially methylated position in the multi-omics dataset. Moreover, we developed a deep neural network-based prediction model that improves performance compared to that of conventional machine learning algorithms. The feature selection method and the prediction model presented in this paper outperformed conventional machine learning algorithms, which utilize typical dimension reduction methods. In addition, we demonstrated that integrating gene expression and DNA methylation data could improve the prediction accuracy. https://github.com/ChihyunPark/DNN_for_ADprediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑发布了新的文献求助30
刚刚
刚刚
刚刚
LXL完成签到,获得积分10
1秒前
N_wh完成签到,获得积分10
1秒前
安静的棉花糖完成签到 ,获得积分10
1秒前
闾丘曼安完成签到,获得积分10
1秒前
尼卡应助suy采纳,获得10
1秒前
1秒前
2秒前
思源应助xyz采纳,获得10
2秒前
2秒前
中华有为发布了新的文献求助10
3秒前
3秒前
FashionBoy应助wwww采纳,获得10
3秒前
3秒前
大方嵩发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
猪猪发布了新的文献求助10
5秒前
单薄白薇发布了新的文献求助10
5秒前
豆子完成签到,获得积分10
6秒前
通~发布了新的文献求助10
7秒前
橘子哥完成签到,获得积分10
7秒前
mnm发布了新的文献求助10
8秒前
柔弱凡松发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
SHDeathlock发布了新的文献求助50
9秒前
乐乐应助hu970采纳,获得10
9秒前
单薄白薇完成签到,获得积分10
11秒前
陈杰发布了新的文献求助10
11秒前
11秒前
11秒前
小张张发布了新的文献求助10
11秒前
乐乐应助YAN采纳,获得10
12秒前
迷惘墨香完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762