间充质干细胞
化学
细胞生物学
生长因子
基质(化学分析)
再生(生物学)
刺激
生物医学工程
生物化学
生物
内分泌学
医学
色谱法
受体
作者
Abdulmonem Alshihri,Wanting Niu,Peer W. Kämmerer,Mansour Al‐Askar,Atsushi Yamashita,Motoichi Kurisawa,Myron Spector
摘要
The treatment of a variety of defects in bony sites could benefit from mitogenic stimulation of osteoprogenitor cells, including endogenous bone marrow-derived mesenchymal stem cells (bMSCs), and from provision of such cells with a matrix permissive of their migration, proliferation, and osteogenic differentiation. That such MSC stimulation could result from treatment with noninvasive (extracorporeal) shock waves (ESWs), and the matrix delivered by injection could enable this therapeutic approach to be employed for applications in which preformed scaffolds and growth factor therapy are difficult to deploy. The objectives of the present study were to investigate focused ESWs for their effects on proliferation, migration, and osteogenic differentiation in an injectable gelatin (Gtn) matrix capable of undergoing covalent cross-linking in vivo. Gtn was conjugated with hydroxyphenyl propionic acid (HPA) in order to enable it to be covalently cross-linked with minute amounts of horseradish peroxidase and hydrogen peroxide. The results demonstrated that 500 shocks of 0.4-mJ/mm2 energy flux density resulted in a twofold greater proliferation of bMSCs in the Gtn-HPA matrix after 14 days, compared with bMSCs grown with supplementation with platelet-derived growth factor (PDGF)-BB, a known mitogen for bMSCs. Moreover, SW treatment enhanced substantially osteogenic differentiation of bMSCs. The Gtn-HPA gel was permissive of MSC migration under the chemotactic influence of the growth factor, PDGF-BB, incorporated into and released by the gel. ESW treatment had no effect on the motility of the MSCs. The findings of the study warrant further investigation of this combined treatment modality for select bony defects.
科研通智能强力驱动
Strongly Powered by AbleSci AI