Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell

立方体(代数) 原位 材料科学 电导率 燃料电池 化学工程 碳纳米管 碳纤维 纳米颗粒 兴奋剂 氮气 碳纳米颗粒 纳米技术 化学 复合材料 光电子学 复合数 有机化学 组合数学 工程类 物理化学 数学
作者
Lulu Chai,Zhuoyi Hu,Xian Wang,Linjie Zhang,Tingting Li,Yue Hu,Junqing Pan,Jinjie Qian,Shaoming Huang
出处
期刊:Carbon [Elsevier]
卷期号:174: 531-539 被引量:117
标识
DOI:10.1016/j.carbon.2020.12.070
摘要

Reasonable design of the porous metal-organic frameworks (MOFs) to convert a burgeoning carbon-based catalysts with high oxygen reduction reaction (ORR) activity are still challenging in energy conversion, storage and transport. Herein, Fe7C3-doped in-situ grown carbon nanotubes and N-doped hollow carbon (Fex[email protected]) are prepared by using a simple and robust preparation method, which is used cubic ZIF-8-derived zinc oxide cubes as a template for secondary MOFs re-growth followed by the final carbonization. In the 0.1 M KOH, the as-pyrolyzed Fe0.1[email protected] electrocatalyst displays the value of half-wave potential is 0.92 V and the value of diffusion-limited current density is 6.08 mA cm−2, respectively, which are close to the corresponding electrochemical values of the standard commercial Pt/C (0.89 V and 5.89 mA cm−2). Meanwhile, the material has passed relevant tests on its long-term stability and methanol tolerance in alkaline media, showing that it has excellent ORR activity and efficient stability under electrocatalysis. Furthermore, the Fe0.1[email protected] materials catalyze a Zn-air battery that delivers a performed peak power density of 105.9 mW cm−2. The impressive catalytic activity of Fe0.1[email protected] stems from the effective synergy between efficient Fe and N co-doping, large specific surface area, and high electrical conductivity. This preparation route for carbon nanomaterials will provide a new synthetic strategy to synthesize high-performance non-noble metal carbon-based ORR catalysts for practical energy-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
郑总完成签到,获得积分10
刚刚
CipherSage应助马尼拉采纳,获得10
刚刚
SCI完成签到 ,获得积分10
1秒前
2秒前
healer发布了新的文献求助10
2秒前
123完成签到,获得积分20
3秒前
李健的小迷弟应助yili采纳,获得10
3秒前
L.完成签到,获得积分10
3秒前
木子发布了新的文献求助10
3秒前
威武诺言发布了新的文献求助10
3秒前
科研通AI5应助孙二二采纳,获得10
3秒前
3秒前
英姑应助rookie_b0采纳,获得10
4秒前
毛慢慢发布了新的文献求助10
4秒前
123完成签到,获得积分10
4秒前
kangkang完成签到,获得积分10
5秒前
丘比特应助东风第一枝采纳,获得10
5秒前
5秒前
丰知然应助normankasimodo采纳,获得10
6秒前
黑森林发布了新的文献求助30
6秒前
hu970发布了新的文献求助10
6秒前
6秒前
俭朴夜雪发布了新的文献求助30
6秒前
林上草应助lzj001983采纳,获得10
6秒前
小白完成签到,获得积分20
6秒前
药疯了完成签到,获得积分20
7秒前
桐桐应助123采纳,获得10
7秒前
风中寄云发布了新的文献求助10
7秒前
buuyoo发布了新的文献求助10
7秒前
zjudxn发布了新的文献求助10
7秒前
春夏爱科研完成签到,获得积分10
8秒前
飞翔的西红柿完成签到,获得积分10
8秒前
xzy完成签到,获得积分10
8秒前
L.发布了新的文献求助20
9秒前
Verdigris完成签到,获得积分10
10秒前
cindy完成签到,获得积分10
10秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
10秒前
金色热浪完成签到 ,获得积分10
10秒前
快去读文献完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759