Fe7C3 nanoparticles with in situ grown CNT on nitrogen doped hollow carbon cube with greatly enhanced conductivity and ORR performance for alkaline fuel cell

立方体(代数) 原位 材料科学 电导率 燃料电池 化学工程 碳纳米管 碳纤维 纳米颗粒 兴奋剂 氮气 碳纳米颗粒 纳米技术 化学 复合材料 光电子学 复合数 有机化学 组合数学 工程类 物理化学 数学
作者
Lulu Chai,Zhuoyi Hu,Xian Wang,Linjie Zhang,Tingting Li,Yue Hu,Junqing Pan,Jinjie Qian,Shaoming Huang
出处
期刊:Carbon [Elsevier]
卷期号:174: 531-539 被引量:117
标识
DOI:10.1016/j.carbon.2020.12.070
摘要

Reasonable design of the porous metal-organic frameworks (MOFs) to convert a burgeoning carbon-based catalysts with high oxygen reduction reaction (ORR) activity are still challenging in energy conversion, storage and transport. Herein, Fe7C3-doped in-situ grown carbon nanotubes and N-doped hollow carbon (Fex[email protected]) are prepared by using a simple and robust preparation method, which is used cubic ZIF-8-derived zinc oxide cubes as a template for secondary MOFs re-growth followed by the final carbonization. In the 0.1 M KOH, the as-pyrolyzed Fe0.1[email protected] electrocatalyst displays the value of half-wave potential is 0.92 V and the value of diffusion-limited current density is 6.08 mA cm−2, respectively, which are close to the corresponding electrochemical values of the standard commercial Pt/C (0.89 V and 5.89 mA cm−2). Meanwhile, the material has passed relevant tests on its long-term stability and methanol tolerance in alkaline media, showing that it has excellent ORR activity and efficient stability under electrocatalysis. Furthermore, the Fe0.1[email protected] materials catalyze a Zn-air battery that delivers a performed peak power density of 105.9 mW cm−2. The impressive catalytic activity of Fe0.1[email protected] stems from the effective synergy between efficient Fe and N co-doping, large specific surface area, and high electrical conductivity. This preparation route for carbon nanomaterials will provide a new synthetic strategy to synthesize high-performance non-noble metal carbon-based ORR catalysts for practical energy-related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
刚刚
周老八发布了新的文献求助10
1秒前
生物牛马完成签到,获得积分20
2秒前
田様应助尊敬冬萱采纳,获得10
2秒前
patato发布了新的文献求助10
2秒前
haohao完成签到,获得积分10
2秒前
Singularity应助jessica采纳,获得10
3秒前
自由莺发布了新的文献求助10
3秒前
SciGPT应助思念需要什么采纳,获得10
3秒前
朱权圣完成签到,获得积分10
4秒前
4秒前
安逸完成签到,获得积分10
4秒前
李健应助cbz采纳,获得10
5秒前
xiaochuan925完成签到 ,获得积分10
5秒前
5秒前
huang完成签到,获得积分10
6秒前
彭于晏应助杨哈哈采纳,获得10
7秒前
上官若男应助泪流不止采纳,获得10
7秒前
周老八完成签到,获得积分10
7秒前
三川完成签到,获得积分10
7秒前
yrt完成签到,获得积分10
7秒前
wxxxxxxxxxx完成签到,获得积分10
8秒前
请叫我风吹麦浪应助haohao采纳,获得10
8秒前
LienAo完成签到 ,获得积分10
8秒前
简单的松鼠完成签到,获得积分10
9秒前
9秒前
10秒前
2105完成签到,获得积分20
10秒前
11秒前
whale发布了新的文献求助10
11秒前
支遥完成签到 ,获得积分10
11秒前
科研通AI2S应助庄生zmj采纳,获得20
12秒前
12秒前
xiaojinzi完成签到,获得积分20
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308920
求助须知:如何正确求助?哪些是违规求助? 2942356
关于积分的说明 8508205
捐赠科研通 2617301
什么是DOI,文献DOI怎么找? 1430043
科研通“疑难数据库(出版商)”最低求助积分说明 664001
邀请新用户注册赠送积分活动 649215