Robust and Interpretable Convolutional Neural Networks to Detect Glaucoma in Optical Coherence Tomography Images

人工智能 卷积神经网络 光学相干层析成像 深度学习 计算机科学 稳健性(进化) 机器学习 模式识别(心理学) 医学影像学 学习迁移 青光眼 上下文图像分类 计算机视觉 图像(数学) 医学 放射科 眼科 基因 化学 生物化学
作者
Kaveri A. Thakoor,Sharath Koorathota,Donald C. Hood,Paul Sajda
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (8): 2456-2466 被引量:37
标识
DOI:10.1109/tbme.2020.3043215
摘要

Recent studies suggest that deep learning systems can now achieve performance on par with medical experts in diagnosis of disease. A prime example is in the field of ophthalmology, where convolutional neural networks (CNNs) have been used to detect retinal and ocular diseases. However, this type of artificial intelligence (AI) has yet to be adopted clinically due to questions regarding robustness of the algorithms to datasets collected at new clinical sites and a lack of explainability of AI-based predictions, especially relative to those of human expert counterparts. In this work, we develop CNN architectures that demonstrate robust detection of glaucoma in optical coherence tomography (OCT) images and test with concept activation vectors (TCAVs) to infer what image concepts CNNs use to generate predictions. Furthermore, we compare TCAV results to eye fixations of clinicians, to identify common decision-making features used by both AI and human experts. We find that employing fine-tuned transfer learning and CNN ensemble learning create end-to-end deep learning models with superior robustness compared to previously reported hybrid deep-learning/machine-learning models, and TCAV/eye-fixation comparison suggests the importance of three OCT report sub-images that are consistent with areas of interest fixated upon by OCT experts to detect glaucoma. The pipeline described here for evaluating CNN robustness and validating interpretable image concepts used by CNNs with eye movements of experts has the potential to help standardize the acceptance of new AI tools for use in the clinic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪鸽鸽发布了新的文献求助20
刚刚
刚刚
1秒前
qks完成签到 ,获得积分10
2秒前
ahxb完成签到,获得积分10
5秒前
linjiaxin完成签到,获得积分10
7秒前
uniphoton完成签到,获得积分10
8秒前
8秒前
小蘑菇应助ahxb采纳,获得10
8秒前
赤枫彤云发布了新的文献求助10
8秒前
能干的月光完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
Tushar完成签到,获得积分10
9秒前
linjiaxin发布了新的文献求助10
10秒前
May应助露露采纳,获得20
11秒前
思源应助研白采纳,获得10
11秒前
K先生完成签到,获得积分10
11秒前
123关闭了123文献求助
14秒前
和谐之玉发布了新的文献求助200
16秒前
18秒前
19秒前
lili完成签到,获得积分10
20秒前
鱼仔发布了新的文献求助10
21秒前
24秒前
24秒前
研白发布了新的文献求助10
25秒前
皮皮完成签到 ,获得积分10
28秒前
宋子虎发布了新的文献求助10
28秒前
linda关注了科研通微信公众号
29秒前
鱼仔完成签到,获得积分10
31秒前
32秒前
兴奋的定帮完成签到 ,获得积分0
33秒前
赘婿应助刘刘大顺采纳,获得10
34秒前
司空元正完成签到 ,获得积分10
34秒前
Owen应助liuzengzhang666采纳,获得10
34秒前
xiejinhui发布了新的文献求助10
35秒前
雪鸽鸽完成签到,获得积分10
38秒前
传奇3应助xiejinhui采纳,获得10
40秒前
刻苦羽毛完成签到,获得积分10
41秒前
虚心的芹发布了新的文献求助10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961022
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134887
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790309
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150