内分泌学
内科学
点头老鼠
胰腺
血管紧张素转化酶2
血管紧张素II
生物
肾
肾素-血管紧张素系统
糖尿病
小岛
医学
血压
传染病(医学专业)
疾病
2019年冠状病毒病(COVID-19)
作者
Heleia Roca-Ho,Vanesa Palau,Javier Gimeno,Julio Pascual,María José Soler,Marta Riera
标识
DOI:10.1038/s41374-020-0440-5
摘要
Type 1 diabetes is a T-cell mediated autoimmune disease characterized by pancreatic beta cells destruction. Angiotensin-converting enzyme 2 (ACE2), a component of renin–angiotensin system (RAS) has been identified in pancreas from type 2 diabetic mice and its overexpression prevents beta cell dysfunction. We studied the effect of ACE2 deletion on pancreatic and renal function in the nonobese diabetic mice, a model that mimics type 1 diabetes. ACE2-deficient NOD mice and the respective controls were generated. Pancreas function and immunohistochemistry studies were performed. Renal function and RAS gene expression were also analyzed. Renal proximal tubular cells were obtained from these animals to dissect the effect of ACE2 deficiency in these cells. In NOD mice, ACE2 deletion significantly worsened glucose homeostasis, decreased islet insulin content, increased beta cell oxidative stress, and RIPK1-positive islets as compared with control mice. Angiotensin-converting enzyme and angiotensin II type 1 receptor (AT1R) were also increased in ACE2-deficient mice. In kidneys of 30-day diabetic mice, ACE2 deletion decreased podocyte number within the glomeruli, and altered renal RAS gene expression in tubules. ACE2 deletion influenced the expression of fibrosis-related genes in isolated primary renal proximal tubular cells before diabetes onset in NOD mice. Our findings suggest that ACE2 deletion may have a deleterious impact on beta cell and renal function, by promoting oxidative stress and increasing necroptosis mediators. In addition, this effect is accompanied by RAS alterations in both pancreas and renal proximal tubular cells, indicating that ACE2 may exert a renopancreatic protective effect on type 1 diabetes, which is activated before diabetes starts. This study examined the contribution of ACE2 in diabetes onset and the role of ACE2 in the progression of diabetic nephropathy in NOD mouse. ACE2 loss leads to an impaired glucose and insulin homeostasis, RAS activation, increase in oxidative stress, and RIPK1 within the pancreas. In the kidney, ACE2 deletion induced podocyte loss, RAS modulation, and renal fibrosis activation in an early phase of diabetes.
科研通智能强力驱动
Strongly Powered by AbleSci AI