A fast decision-making method for process planning with dynamic machining resources via deep reinforcement learning

强化学习 过程(计算) 启发式 计算机科学 机械加工 工业工程 工程类 人工智能 机械工程 操作系统
作者
Wenbo Wu,Zijun Wu,Jiani Zeng,Kuan Fan
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:58: 392-411 被引量:35
标识
DOI:10.1016/j.jmsy.2020.12.015
摘要

Mass customized production brings great uncertainty to the computer-aided process planning (CAPP). Current CAPP methods based on heuristic optimization assume in advance that manufacturing resources are static and make a deterministic plan that cannot cope with the uncertainty of the manufacture environment. As a promising method in solving complex and dynamic decision-making problems, deep reinforcement learning is employed in this paper for process planning, aiming at promoting the response speed by exploiting the reusability and expandability of past decision-making experiences. To simplify the decision procedure, two different types of decisions, operation sequencing and resource selection, are fused into one by integrating environment states and agent behaviors in a matrix manner. Then, a masking algorithm is developed to screen out currently inexecutable machining operations at each decision step and process planning datasets are generated for training and testing according to the actual processing logic. Next, the Monte Carlo method and the deep learning algorithm are utilized to evaluate and improve the process policy, respectively. Finally, the searching capability of the proposed method for both static and dynamic manufacturing resources are tested in case studies, and the results are discussed. It is shown that the proposed approach can solve the planning problem more efficiently compared with current optimization-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Proddy完成签到,获得积分10
刚刚
1秒前
大模型应助文静盈采纳,获得10
1秒前
sia完成签到,获得积分10
1秒前
饱满以松发布了新的文献求助10
1秒前
1秒前
小鱼完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
科研通AI6应助洁净的千凡采纳,获得10
2秒前
317完成签到,获得积分10
2秒前
lin完成签到 ,获得积分10
2秒前
3秒前
輕語完成签到,获得积分10
4秒前
4秒前
活ni的pig完成签到 ,获得积分10
4秒前
科研小菜狗完成签到 ,获得积分10
4秒前
zyx完成签到,获得积分10
4秒前
4秒前
4秒前
小曦仔完成签到,获得积分10
5秒前
PPP应助morii采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
美好的小白菜完成签到,获得积分10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
317发布了新的文献求助10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得30
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5257658
求助须知:如何正确求助?哪些是违规求助? 4419729
关于积分的说明 13757299
捐赠科研通 4293125
什么是DOI,文献DOI怎么找? 2355777
邀请新用户注册赠送积分活动 1352208
关于科研通互助平台的介绍 1313034