清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A fast decision-making method for process planning with dynamic machining resources via deep reinforcement learning

强化学习 过程(计算) 启发式 计算机科学 机械加工 工业工程 工程类 人工智能 机械工程 操作系统
作者
Wenbo Wu,Zijun Wu,Jiani Zeng,Kuan Fan
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 392-411 被引量:35
标识
DOI:10.1016/j.jmsy.2020.12.015
摘要

Mass customized production brings great uncertainty to the computer-aided process planning (CAPP). Current CAPP methods based on heuristic optimization assume in advance that manufacturing resources are static and make a deterministic plan that cannot cope with the uncertainty of the manufacture environment. As a promising method in solving complex and dynamic decision-making problems, deep reinforcement learning is employed in this paper for process planning, aiming at promoting the response speed by exploiting the reusability and expandability of past decision-making experiences. To simplify the decision procedure, two different types of decisions, operation sequencing and resource selection, are fused into one by integrating environment states and agent behaviors in a matrix manner. Then, a masking algorithm is developed to screen out currently inexecutable machining operations at each decision step and process planning datasets are generated for training and testing according to the actual processing logic. Next, the Monte Carlo method and the deep learning algorithm are utilized to evaluate and improve the process policy, respectively. Finally, the searching capability of the proposed method for both static and dynamic manufacturing resources are tested in case studies, and the results are discussed. It is shown that the proposed approach can solve the planning problem more efficiently compared with current optimization-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lesliechan发布了新的文献求助10
6秒前
傅。完成签到 ,获得积分10
11秒前
希望天下0贩的0应助半晴采纳,获得10
19秒前
今后应助半晴采纳,获得10
19秒前
25秒前
37秒前
TT0622发布了新的文献求助10
43秒前
TT0622完成签到,获得积分10
48秒前
陶醉的小海豚完成签到,获得积分10
53秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
半晴发布了新的文献求助10
1分钟前
1分钟前
2分钟前
佳佳发布了新的文献求助10
2分钟前
萝卜青菜完成签到 ,获得积分10
2分钟前
无花果应助冷静大米采纳,获得10
2分钟前
tt完成签到,获得积分10
2分钟前
2分钟前
冷静大米发布了新的文献求助10
2分钟前
善学以致用应助冷静大米采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
沉默念瑶完成签到 ,获得积分10
4分钟前
4分钟前
lesliechan完成签到,获得积分10
4分钟前
科研通AI6应助大熊采纳,获得10
4分钟前
大模型应助Rui采纳,获得10
4分钟前
深情安青应助huaixup采纳,获得10
4分钟前
5分钟前
华仔应助CC采纳,获得100
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651112
求助须知:如何正确求助?哪些是违规求助? 4783297
关于积分的说明 15053122
捐赠科研通 4809844
什么是DOI,文献DOI怎么找? 2572683
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687