A fast decision-making method for process planning with dynamic machining resources via deep reinforcement learning

强化学习 过程(计算) 启发式 计算机科学 机械加工 工业工程 工程类 人工智能 机械工程 操作系统
作者
Wenbo Wu,Zijun Wu,Jiani Zeng,Kuan Fan
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 392-411 被引量:35
标识
DOI:10.1016/j.jmsy.2020.12.015
摘要

Mass customized production brings great uncertainty to the computer-aided process planning (CAPP). Current CAPP methods based on heuristic optimization assume in advance that manufacturing resources are static and make a deterministic plan that cannot cope with the uncertainty of the manufacture environment. As a promising method in solving complex and dynamic decision-making problems, deep reinforcement learning is employed in this paper for process planning, aiming at promoting the response speed by exploiting the reusability and expandability of past decision-making experiences. To simplify the decision procedure, two different types of decisions, operation sequencing and resource selection, are fused into one by integrating environment states and agent behaviors in a matrix manner. Then, a masking algorithm is developed to screen out currently inexecutable machining operations at each decision step and process planning datasets are generated for training and testing according to the actual processing logic. Next, the Monte Carlo method and the deep learning algorithm are utilized to evaluate and improve the process policy, respectively. Finally, the searching capability of the proposed method for both static and dynamic manufacturing resources are tested in case studies, and the results are discussed. It is shown that the proposed approach can solve the planning problem more efficiently compared with current optimization-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助Xx丶采纳,获得10
刚刚
1秒前
小唐勇敢学习完成签到,获得积分20
1秒前
董婷婷发布了新的文献求助10
1秒前
cyf完成签到,获得积分10
1秒前
唐太君发布了新的文献求助10
1秒前
2秒前
花畦种豆完成签到,获得积分10
2秒前
3秒前
LIZ发布了新的文献求助10
3秒前
ilihe应助伍秋望采纳,获得10
3秒前
找找找发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
科研圈圈完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
CodeCraft应助luo采纳,获得10
7秒前
许子峻发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
科研通AI6.1应助科科比采纳,获得10
9秒前
goufufu完成签到,获得积分10
9秒前
10秒前
lee1984612发布了新的文献求助10
11秒前
JamesPei应助LL采纳,获得10
11秒前
英俊的铭应助Horizon采纳,获得10
11秒前
丘比特应助糖淘淘采纳,获得10
12秒前
打打应助闪闪的乐蕊采纳,获得10
13秒前
俊俊发布了新的文献求助10
13秒前
13秒前
Sylvia完成签到,获得积分10
13秒前
嘟嘟发布了新的文献求助30
14秒前
jane发布了新的文献求助10
14秒前
研友_Z72z2n完成签到 ,获得积分10
14秒前
英吉利25发布了新的文献求助10
14秒前
15秒前
hyz2333发布了新的文献求助10
15秒前
许子峻完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776435
求助须知:如何正确求助?哪些是违规求助? 5629479
关于积分的说明 15442901
捐赠科研通 4908608
什么是DOI,文献DOI怎么找? 2641332
邀请新用户注册赠送积分活动 1589287
关于科研通互助平台的介绍 1543910