A fast decision-making method for process planning with dynamic machining resources via deep reinforcement learning

强化学习 过程(计算) 启发式 计算机科学 机械加工 工业工程 工程类 人工智能 机械工程 操作系统
作者
Wenbo Wu,Zijun Wu,Jiani Zeng,Kuan Fan
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 392-411 被引量:35
标识
DOI:10.1016/j.jmsy.2020.12.015
摘要

Mass customized production brings great uncertainty to the computer-aided process planning (CAPP). Current CAPP methods based on heuristic optimization assume in advance that manufacturing resources are static and make a deterministic plan that cannot cope with the uncertainty of the manufacture environment. As a promising method in solving complex and dynamic decision-making problems, deep reinforcement learning is employed in this paper for process planning, aiming at promoting the response speed by exploiting the reusability and expandability of past decision-making experiences. To simplify the decision procedure, two different types of decisions, operation sequencing and resource selection, are fused into one by integrating environment states and agent behaviors in a matrix manner. Then, a masking algorithm is developed to screen out currently inexecutable machining operations at each decision step and process planning datasets are generated for training and testing according to the actual processing logic. Next, the Monte Carlo method and the deep learning algorithm are utilized to evaluate and improve the process policy, respectively. Finally, the searching capability of the proposed method for both static and dynamic manufacturing resources are tested in case studies, and the results are discussed. It is shown that the proposed approach can solve the planning problem more efficiently compared with current optimization-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huopppp发布了新的文献求助10
刚刚
huopppp发布了新的文献求助10
刚刚
充电宝应助MANGMANG采纳,获得10
刚刚
huopppp发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
herococa给April的求助进行了留言
1秒前
1秒前
huopppp发布了新的文献求助10
1秒前
nature发布了新的文献求助10
2秒前
3秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
huopppp发布了新的文献求助10
4秒前
ghhhn完成签到,获得积分10
4秒前
huopppp发布了新的文献求助10
4秒前
ding应助温暖伟祺采纳,获得10
4秒前
阿萱发布了新的文献求助10
6秒前
6秒前
未来可以发布了新的文献求助10
7秒前
山海之间完成签到,获得积分10
7秒前
8秒前
小慧儿发布了新的文献求助10
8秒前
焜少完成签到,获得积分10
9秒前
10秒前
丘比特应助典雅的如之采纳,获得10
12秒前
12秒前
14秒前
坦率灵槐应助fanfanfan采纳,获得10
14秒前
科研虫应助张佳宁采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648879
求助须知:如何正确求助?哪些是违规求助? 4777004
关于积分的说明 15046015
捐赠科研通 4807773
什么是DOI,文献DOI怎么找? 2571091
邀请新用户注册赠送积分活动 1527735
关于科研通互助平台的介绍 1486650