A fast decision-making method for process planning with dynamic machining resources via deep reinforcement learning

强化学习 过程(计算) 启发式 计算机科学 机械加工 工业工程 工程类 人工智能 机械工程 操作系统
作者
Wenbo Wu,Zijun Wu,Jiani Zeng,Kuan Fan
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:58: 392-411 被引量:35
标识
DOI:10.1016/j.jmsy.2020.12.015
摘要

Mass customized production brings great uncertainty to the computer-aided process planning (CAPP). Current CAPP methods based on heuristic optimization assume in advance that manufacturing resources are static and make a deterministic plan that cannot cope with the uncertainty of the manufacture environment. As a promising method in solving complex and dynamic decision-making problems, deep reinforcement learning is employed in this paper for process planning, aiming at promoting the response speed by exploiting the reusability and expandability of past decision-making experiences. To simplify the decision procedure, two different types of decisions, operation sequencing and resource selection, are fused into one by integrating environment states and agent behaviors in a matrix manner. Then, a masking algorithm is developed to screen out currently inexecutable machining operations at each decision step and process planning datasets are generated for training and testing according to the actual processing logic. Next, the Monte Carlo method and the deep learning algorithm are utilized to evaluate and improve the process policy, respectively. Finally, the searching capability of the proposed method for both static and dynamic manufacturing resources are tested in case studies, and the results are discussed. It is shown that the proposed approach can solve the planning problem more efficiently compared with current optimization-based approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llf完成签到 ,获得积分10
刚刚
LX完成签到,获得积分10
刚刚
科研通AI6.1应助online1881采纳,获得10
刚刚
一坨台台完成签到,获得积分10
1秒前
1秒前
大力元霜完成签到,获得积分10
1秒前
2秒前
牛牛超人发布了新的文献求助20
3秒前
6秒前
boyis完成签到,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
YR完成签到 ,获得积分10
9秒前
9秒前
9秒前
落寞剑成完成签到 ,获得积分10
10秒前
慕青应助WYN采纳,获得10
11秒前
11秒前
11秒前
温柔柜子发布了新的文献求助10
11秒前
13秒前
13秒前
Mito2009完成签到,获得积分10
13秒前
littleby发布了新的文献求助10
13秒前
sling116完成签到,获得积分10
15秒前
哈哈发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
阚曦完成签到,获得积分10
16秒前
Mito2009发布了新的文献求助10
16秒前
17秒前
追梦人完成签到,获得积分10
17秒前
顾矜应助sinlar采纳,获得10
19秒前
20秒前
ylkylk发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
online1881发布了新的文献求助10
22秒前
希望天下0贩的0应助liu采纳,获得10
23秒前
CAOHOU应助Mito2009采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382