Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research

人工智能 计算机科学 卷积神经网络 工作流程 任务(项目管理) 深度学习 分割 判别式 搜索引擎索引 机器学习 模式识别(心理学) 数据库 经济 管理
作者
Daichi Kitaguchi,Nobuyoshi Takeshita,Hiroki Matsuzaki,Tatsuya Oda,Masahiko Watanabe,Kensaku Mori,Etsuko Kobayashi,Masaaki Ito
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:79: 88-94 被引量:95
标识
DOI:10.1016/j.ijsu.2020.05.015
摘要

Identifying laparoscopic surgical videos using artificial intelligence (AI) facilitates the automation of several currently time-consuming manual processes, including video analysis, indexing, and video-based skill assessment. This study aimed to construct a large annotated dataset comprising laparoscopic colorectal surgery (LCRS) videos from multiple institutions and evaluate the accuracy of automatic recognition for surgical phase, action, and tool by combining this dataset with AI.A total of 300 intraoperative videos were collected from 19 high-volume centers. A series of surgical workflows were classified into 9 phases and 3 actions, and the area of 5 tools were assigned by painting. More than 82 million frames were annotated for a phase and action classification task, and 4000 frames were annotated for a tool segmentation task. Of these frames, 80% were used for the training dataset and 20% for the test dataset. A convolutional neural network (CNN) was used to analyze the videos. Intersection over union (IoU) was used as the evaluation metric for tool recognition.The overall accuracies for the automatic surgical phase and action classification task were 81.0% and 83.2%, respectively. The mean IoU for the automatic tool segmentation task for 5 tools was 51.2%.A large annotated dataset of LCRS videos was constructed, and the phase, action, and tool were recognized with high accuracy using AI. Our dataset has potential uses in medical applications such as automatic video indexing and surgical skill assessments. Open research will assist in improving CNN models by making our dataset available in the field of computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxdnbb完成签到,获得积分10
1秒前
追寻的鞯发布了新的文献求助10
2秒前
秦嘉旎完成签到,获得积分10
3秒前
阿喵发布了新的文献求助10
4秒前
念想完成签到 ,获得积分10
6秒前
64658发布了新的文献求助80
7秒前
8秒前
8秒前
modernfamilyfan应助风趣乐荷采纳,获得10
8秒前
开心完成签到,获得积分10
10秒前
zxdnbb发布了新的文献求助10
11秒前
阿喵完成签到,获得积分10
11秒前
开放大开关注了科研通微信公众号
12秒前
Akim应助JunZhuoXiao采纳,获得10
13秒前
小野发布了新的文献求助10
14秒前
willlee发布了新的文献求助10
14秒前
李白发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
wwwww完成签到,获得积分10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得50
16秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
猪猪hero应助guochang采纳,获得10
17秒前
19秒前
wwwww发布了新的文献求助10
19秒前
20秒前
追寻的鞯完成签到,获得积分20
22秒前
李健的粉丝团团长应助LYY采纳,获得10
23秒前
24秒前
完美世界应助大真人采纳,获得10
24秒前
带点脑子读研求求你了完成签到,获得积分10
25秒前
所所应助zxdnbb采纳,获得10
26秒前
医学牲发布了新的文献求助10
27秒前
丘比特应助虚幻盼晴采纳,获得10
28秒前
29秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952555
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089696
捐赠科研通 3228463
什么是DOI,文献DOI怎么找? 1784978
邀请新用户注册赠送积分活动 869059
科研通“疑难数据库(出版商)”最低求助积分说明 801309