Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research

人工智能 计算机科学 卷积神经网络 工作流程 任务(项目管理) 深度学习 分割 判别式 搜索引擎索引 机器学习 模式识别(心理学) 数据库 经济 管理
作者
Daichi Kitaguchi,Nobuyoshi Takeshita,Hiroki Matsuzaki,Tatsuya Oda,Masahiko Watanabe,Kensaku Mori,Etsuko Kobayashi,Masaaki Ito
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:79: 88-94 被引量:95
标识
DOI:10.1016/j.ijsu.2020.05.015
摘要

Identifying laparoscopic surgical videos using artificial intelligence (AI) facilitates the automation of several currently time-consuming manual processes, including video analysis, indexing, and video-based skill assessment. This study aimed to construct a large annotated dataset comprising laparoscopic colorectal surgery (LCRS) videos from multiple institutions and evaluate the accuracy of automatic recognition for surgical phase, action, and tool by combining this dataset with AI.A total of 300 intraoperative videos were collected from 19 high-volume centers. A series of surgical workflows were classified into 9 phases and 3 actions, and the area of 5 tools were assigned by painting. More than 82 million frames were annotated for a phase and action classification task, and 4000 frames were annotated for a tool segmentation task. Of these frames, 80% were used for the training dataset and 20% for the test dataset. A convolutional neural network (CNN) was used to analyze the videos. Intersection over union (IoU) was used as the evaluation metric for tool recognition.The overall accuracies for the automatic surgical phase and action classification task were 81.0% and 83.2%, respectively. The mean IoU for the automatic tool segmentation task for 5 tools was 51.2%.A large annotated dataset of LCRS videos was constructed, and the phase, action, and tool were recognized with high accuracy using AI. Our dataset has potential uses in medical applications such as automatic video indexing and surgical skill assessments. Open research will assist in improving CNN models by making our dataset available in the field of computer vision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜美坤完成签到 ,获得积分10
刚刚
1秒前
1秒前
领导范儿应助衾L采纳,获得10
1秒前
ANQ完成签到,获得积分10
2秒前
王德发发布了新的文献求助10
2秒前
zoey发布了新的文献求助10
3秒前
misstwo完成签到,获得积分10
3秒前
斯文败类应助布谷采纳,获得20
3秒前
SCINEXUS应助walyr采纳,获得30
3秒前
王闪闪完成签到,获得积分10
4秒前
脑洞疼应助DZ采纳,获得10
5秒前
6秒前
Xiaoyu完成签到,获得积分20
7秒前
guzhfia发布了新的文献求助10
7秒前
7秒前
甜蜜幼枫完成签到,获得积分10
11秒前
ouyang完成签到,获得积分10
12秒前
顾矜应助益达采纳,获得10
12秒前
12秒前
13秒前
九命猫发布了新的文献求助10
13秒前
上上发布了新的文献求助10
13秒前
王德发完成签到,获得积分20
13秒前
沐沐呵完成签到,获得积分10
13秒前
yu完成签到,获得积分20
13秒前
学术圈已祛魅完成签到,获得积分10
13秒前
好事花生完成签到,获得积分10
14秒前
希望天下0贩的0应助艺阳采纳,获得10
15秒前
爆米花应助淡定吃吃采纳,获得10
15秒前
慕青应助牧海冬采纳,获得10
16秒前
16秒前
等待忆安完成签到,获得积分10
17秒前
英俊的铭应助l玖采纳,获得10
17秒前
18秒前
18秒前
19秒前
斯文败类应助Kayz采纳,获得10
20秒前
20秒前
良辰应助可以的采纳,获得10
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328109
求助须知:如何正确求助?哪些是违规求助? 2958209
关于积分的说明 8589546
捐赠科研通 2636464
什么是DOI,文献DOI怎么找? 1443022
科研通“疑难数据库(出版商)”最低求助积分说明 668490
邀请新用户注册赠送积分活动 655711