Flexible high-temperature dielectric materials from polymer nanocomposites

材料科学 氮化硼 纳米复合材料 电介质 数码产品 复合材料 储能 聚合物纳米复合材料 电容感应 陶瓷 光电子学 电气工程 功率(物理) 工程类 量子力学 物理
作者
Qi Li,Lei Chen,Matthew R. Gadinski,Shihai Zhang,Guangzu Zhang,Haoyu U. Li,Elissei Iagodkine,Aman Haque,Long‐Qing Chen,Thomas N. Jackson,Qing Wang
出处
期刊:Nature [Springer Nature]
卷期号:523 (7562): 576-579 被引量:1973
标识
DOI:10.1038/nature14647
摘要

Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的问寒应助Anne采纳,获得20
刚刚
英俊的铭应助邢契采纳,获得10
1秒前
青山发布了新的文献求助10
1秒前
cfzy完成签到,获得积分10
1秒前
WANGYUANLE完成签到,获得积分10
1秒前
刘佳宇发布了新的文献求助10
1秒前
田様应助小陈采纳,获得10
1秒前
莎普爱思完成签到,获得积分10
2秒前
颜琀樱发布了新的文献求助10
2秒前
Redemption发布了新的文献求助10
2秒前
慕青应助哲小凡采纳,获得10
3秒前
科研通AI2S应助友好元蝶采纳,获得10
3秒前
3秒前
南冥完成签到 ,获得积分10
3秒前
星辰大海应助sweat采纳,获得10
3秒前
丰富丹秋完成签到,获得积分10
3秒前
共享精神应助jialiang采纳,获得10
3秒前
孙Tuan完成签到,获得积分10
4秒前
科研小郭完成签到,获得积分10
4秒前
4秒前
专注的问寒应助乐乐侠采纳,获得20
4秒前
whisper发布了新的文献求助10
4秒前
思源应助灵巧妙柏采纳,获得10
4秒前
wy.he应助科研通管家采纳,获得10
5秒前
隐形曼青应助不想起床采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
三岁应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
三岁应助科研通管家采纳,获得10
6秒前
6秒前
林早上完成签到 ,获得积分10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
三岁应助科研通管家采纳,获得10
6秒前
gj520完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389