Using Network Analysis to Identify Central Symptoms of Adolescent Depression

悲伤 心理学 孤独 萧条(经济学) 临床心理学 悲观 愤怒 无血性 精神科 认识论 哲学 宏观经济学 经济 精神分裂症(面向对象编程)
作者
Michael C Mullarkey,Igor Marchetti,Christopher G. Beevers
出处
期刊:Journal of Clinical Child and Adolescent Psychology [Informa]
卷期号:48 (4): 656-668 被引量:252
标识
DOI:10.1080/15374416.2018.1437735
摘要

Experiencing depression symptoms, even at mild to moderate levels, is associated with maladaptive outcomes for adolescents. We used network analysis to evaluate which symptoms (and associations between symptoms) are most central to adolescent depression. Participants were part of a large, diverse community sample (N = 1,409) of adolescents between 13 and 19 years of age. Network analysis was used to identify the most central symptoms (nodes) and associations between symptoms (edges) assessed by the Children’s Depression Inventory. We also evaluated these centrality indicators for network robustness using stability and accuracy tests, associated symptom centrality with mean levels of symptoms, and examined potential differences between the structure and connectivity of depression networks in boys and girls. The most central symptoms in the network were self-hatred, loneliness, sadness, and pessimism. The strongest associations between symptoms were sadness–crying, anhedonia–school dislike, sadness–loneliness, school work difficulty–school performance decrement, self-hatred–negative body image, sleep disturbance–fatigue, and self-deprecation–self-blame. The network was robust to stability and accuracy tests. Notably, symptom centrality and mean levels of symptoms were not associated. Boys and girls’ networks did not differ in levels of connectivity, though the link between body image and self-hatred was stronger in girls than boys. Self-hatred, loneliness, sadness, and pessimism were the most central symptoms in adolescent depression networks, suggesting that these symptoms (and associations between symptoms) should be prioritized in theoretical models of adolescent depression and could also serve as important treatment targets for adolescent depression interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玹玗完成签到,获得积分20
1秒前
linty应助JoJo采纳,获得10
1秒前
xz333126发布了新的文献求助10
1秒前
2秒前
科研通AI2S应助XPR采纳,获得10
2秒前
wang完成签到,获得积分10
2秒前
daguan完成签到,获得积分10
2秒前
洁净衬衫完成签到 ,获得积分10
2秒前
2秒前
白222发布了新的文献求助10
2秒前
wangshibing发布了新的文献求助10
3秒前
cc发布了新的文献求助10
3秒前
顺利的伊应助拾忆采纳,获得20
4秒前
cream完成签到,获得积分20
4秒前
与木发布了新的文献求助10
4秒前
谷策发布了新的文献求助10
5秒前
Sara完成签到,获得积分10
6秒前
6秒前
6秒前
Daria完成签到,获得积分10
6秒前
7秒前
8秒前
勤奋雨完成签到,获得积分10
9秒前
sawashiro27完成签到,获得积分10
9秒前
桐桐应助白222采纳,获得10
10秒前
11秒前
一张不够花完成签到,获得积分10
11秒前
11秒前
yacon发布了新的文献求助10
12秒前
狄谷南发布了新的文献求助10
12秒前
科研通AI2S应助孤独的幻香采纳,获得10
13秒前
香蕉觅云应助hhehe采纳,获得10
14秒前
思源应助Ivy采纳,获得10
16秒前
CipherSage应助Wenpandaen采纳,获得10
16秒前
略略略爱完成签到 ,获得积分10
16秒前
XPR发布了新的文献求助10
16秒前
可耐的白山完成签到,获得积分10
16秒前
17秒前
香蕉觅云应助Sylvia采纳,获得10
17秒前
俭朴尔竹完成签到 ,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655