Examining palpebral conjunctiva for anemia assessment with image processing methods

HSL和HSV色彩空间 计算机科学 人工智能 色调 色空间 RGB颜色模型 模式识别(心理学) 阈值 特征向量 马氏距离 计算机视觉 医学 图像(数学) 病毒学 病毒
作者
Yiming Chen,Shaou-Gang Miaou,Hongyu Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:137: 125-135 被引量:39
标识
DOI:10.1016/j.cmpb.2016.08.025
摘要

Examining the hemoglobin level of blood is an important way to achieve the diagnosis of anemia, but it requires blood drawing and blood test. Examining the color distribution of palpebral conjunctiva is a standard procedure of anemia diagnosis, which requires no blood test. However, since color perception is not always consistent among different people, we attempt to imitate the way of physical examination of palpebral conjunctiva to detect anemia, so that computers can identify anemia patients automatically in a consolidated manner for a screening process. In this paper we propose two algorithms for anemia diagnosis. The first algorithm is intended to be simple and fast, while the second one to be more sophisticated and robust, providing an option for different applications. The first algorithm consists of a simple two-stage classifier. In the first stage, we use a thresholding decision technique based on a feature called high hue rate (HHR) (extracted from the HSI color space). In the second stage, a feature called pixel value in the middle (PVM) (extracted from the RGB color space) is proposed, followed by the use of a minimum distance classifier based on Mahalanobis distance. In the second algorithm, we consider 18 possible features, including a newly added entropy feature, some improved features from the first algorithm, and 13 features proposed in a previous work. We use correlation and simple statistics to select 3 relatively independent features (entropy, binarization of HHR, and PVM of G component) for classification using a support vector machine or an artificial neural network. Finally, we evaluate the classification performance of the proposed algorithms in terms of sensitivity, specificity, and Kappa value. The experimental results show relatively good performance and prove the feasibility of our attempt, which may encourage more follow-up study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢安发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
wlj完成签到 ,获得积分10
2秒前
SciGPT应助hohokuz采纳,获得10
2秒前
书立方完成签到 ,获得积分10
3秒前
3秒前
metalmd完成签到,获得积分10
3秒前
研友_08okB8完成签到,获得积分10
4秒前
Zn应助还不如瞎写采纳,获得10
4秒前
迟大猫应助无辜之卉采纳,获得10
4秒前
搜集达人应助无辜之卉采纳,获得10
4秒前
王玉琴发布了新的文献求助20
4秒前
okghy完成签到 ,获得积分10
5秒前
YYY完成签到 ,获得积分10
5秒前
pinging应助肖俊彦采纳,获得10
5秒前
八八发布了新的文献求助20
6秒前
通~发布了新的文献求助30
6秒前
淡定的思松应助Ryan采纳,获得10
6秒前
李来仪发布了新的文献求助10
6秒前
7秒前
封小封完成签到,获得积分10
7秒前
面面完成签到,获得积分20
7秒前
笑点低梦露完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
DD完成签到,获得积分10
9秒前
今非完成签到,获得积分10
9秒前
研友_VZG7GZ应助LiShin采纳,获得10
9秒前
wangye完成签到,获得积分10
10秒前
糜厉完成签到,获得积分10
11秒前
11秒前
希望天下0贩的0应助谢安采纳,获得10
11秒前
12秒前
12秒前
wangye发布了新的文献求助10
12秒前
拼搏起眸完成签到 ,获得积分20
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794