Examining palpebral conjunctiva for anemia assessment with image processing methods

HSL和HSV色彩空间 计算机科学 人工智能 色调 色空间 RGB颜色模型 模式识别(心理学) 阈值 特征向量 马氏距离 计算机视觉 医学 图像(数学) 病毒学 病毒
作者
Yiming Chen,Shaou-Gang Miaou,Hongyu Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:137: 125-135 被引量:39
标识
DOI:10.1016/j.cmpb.2016.08.025
摘要

Examining the hemoglobin level of blood is an important way to achieve the diagnosis of anemia, but it requires blood drawing and blood test. Examining the color distribution of palpebral conjunctiva is a standard procedure of anemia diagnosis, which requires no blood test. However, since color perception is not always consistent among different people, we attempt to imitate the way of physical examination of palpebral conjunctiva to detect anemia, so that computers can identify anemia patients automatically in a consolidated manner for a screening process. In this paper we propose two algorithms for anemia diagnosis. The first algorithm is intended to be simple and fast, while the second one to be more sophisticated and robust, providing an option for different applications. The first algorithm consists of a simple two-stage classifier. In the first stage, we use a thresholding decision technique based on a feature called high hue rate (HHR) (extracted from the HSI color space). In the second stage, a feature called pixel value in the middle (PVM) (extracted from the RGB color space) is proposed, followed by the use of a minimum distance classifier based on Mahalanobis distance. In the second algorithm, we consider 18 possible features, including a newly added entropy feature, some improved features from the first algorithm, and 13 features proposed in a previous work. We use correlation and simple statistics to select 3 relatively independent features (entropy, binarization of HHR, and PVM of G component) for classification using a support vector machine or an artificial neural network. Finally, we evaluate the classification performance of the proposed algorithms in terms of sensitivity, specificity, and Kappa value. The experimental results show relatively good performance and prove the feasibility of our attempt, which may encourage more follow-up study in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助唐古拉采纳,获得10
1秒前
传奇3应助研友_Z1xNWn采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
NexusExplorer应助Leslie采纳,获得10
2秒前
橴暘应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
LIN完成签到,获得积分10
3秒前
nanarthur发布了新的文献求助10
3秒前
6秒前
9秒前
9秒前
9秒前
丘比特应助Lovely_pan采纳,获得10
9秒前
情怀应助yyh12138采纳,获得10
9秒前
9秒前
mashu完成签到,获得积分10
11秒前
小小小何完成签到 ,获得积分10
11秒前
李爱国应助Bowen Chu采纳,获得10
12秒前
雷半双发布了新的文献求助30
12秒前
well发布了新的文献求助10
13秒前
kong发布了新的文献求助10
13秒前
13秒前
简单如天发布了新的文献求助30
13秒前
13秒前
科研通AI2S应助小吉采纳,获得10
13秒前
quhayley应助Yara.H采纳,获得10
14秒前
diguohu完成签到,获得积分10
14秒前
qian发布了新的文献求助10
15秒前
Kira完成签到,获得积分20
15秒前
思源应助踏实青槐采纳,获得10
15秒前
廾匸发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706