Microstructure of carbon nitride affecting synergetic photocatalytic activity: Hydrogen bonds vs. structural defects

氮化碳 光催化 材料科学 氮化物 聚合 石墨氮化碳 碳纤维 化学工程 纳米技术 光化学 催化作用 聚合物 化学 复合材料 有机化学 复合数 工程类 图层(电子)
作者
Huachun Lan,Lili Li,Xiaoqiang An,Fei Liu,Cuibai Chen,Huijuan Liu,Jiuhui Qu
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:204: 49-57 被引量:165
标识
DOI:10.1016/j.apcatb.2016.11.022
摘要

Carbon nitride has emerged as one of the most attractive materials for developing photocatalysts with low cost, high efficiency and structural stability. However, fast charge recombination caused intrinsically by the π–π conjugated electronic system severely limits its photocatalytic performance. Constructing carbon nitride photocatalysts with modulated electronic structures is thus a promising but challenging task. In this paper, carbon nitride with different microstructural features, such as degree of polymerization, hydrogen bonds, bandgap, structural defects and ratio of C/N, were synthesized by polymerization of different types of nitrogen-rich precursors. Synergetic reactions were rationally designed for hydrogen production and the efficient and simultaneous removal of multiple contaminants, using carbon nitrides as metal-free photocatalysts. The significant impact of hydrogen bonds on synergetic photocatalysis was comprehensively demonstrated. With the smallest amount of hydrogen bonds, carbon nitride derived from urea exhibited fast charge transfer between interlayers, which is a prerequisite for superior photoactivity. By contrast, the polymerization of melamine and cyanamide was favorable for the formation of abundant hydrogen bonds and intrinsic vacancy defects. It was found that the coexistence of nitrogen deficiency and oxygen-doped microstructures could facilitate the activation of oxygen molecules, and thereby contributed to their moderate photoactivity. This research provides fundamental insights into the microstructural engineering of carbon nitride for high-performance synergetic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
栗子鱼完成签到,获得积分10
1秒前
完美世界应助Cancey采纳,获得10
2秒前
陈颖完成签到,获得积分10
2秒前
所所应助xuhongbo采纳,获得10
3秒前
4秒前
阳光冰颜完成签到,获得积分10
5秒前
6秒前
7秒前
隐形曼青应助彭云峰采纳,获得10
7秒前
儒雅颜完成签到,获得积分10
7秒前
大大怪完成签到 ,获得积分10
7秒前
heartsooo完成签到,获得积分10
8秒前
高贵的夜南完成签到,获得积分20
9秒前
9秒前
9秒前
谨慎的映寒给燕南大厨子的求助进行了留言
9秒前
11秒前
明理土豆关注了科研通微信公众号
12秒前
碧蓝安露发布了新的文献求助10
14秒前
CYL07完成签到 ,获得积分10
15秒前
Owen应助YI点半的飞机场采纳,获得10
16秒前
Li完成签到,获得积分10
17秒前
asdfqwer应助heartsooo采纳,获得10
18秒前
20秒前
Qsss完成签到,获得积分10
22秒前
小情绪完成签到 ,获得积分10
22秒前
23秒前
陶军辉发布了新的文献求助10
24秒前
邵竺发布了新的文献求助10
28秒前
乐乐乐乐乐乐应助陶军辉采纳,获得10
30秒前
Rashalin完成签到,获得积分10
30秒前
碧蓝安露完成签到,获得积分10
30秒前
30秒前
天天快乐应助希勤采纳,获得10
31秒前
领导范儿应助饼饼采纳,获得10
31秒前
坚强亦丝应助小小杜采纳,获得10
32秒前
伶俐的高烽完成签到 ,获得积分10
32秒前
顺心的定帮完成签到 ,获得积分10
34秒前
kunkun完成签到,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825