Simplify Your Covariance Matrix Adaptation Evolution Strategy

CMA-ES公司 协方差矩阵 进化策略 协方差 基质(化学分析) 算法 数学优化 有理二次协方差函数 数学 协方差矩阵的估计 计算机科学 协方差交集 人口 进化计算 统计 材料科学 复合材料 人口学 社会学
作者
Hans-Georg Beyer,Bernhard Sendhoff
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 746-759 被引量:86
标识
DOI:10.1109/tevc.2017.2680320
摘要

The standard covariance matrix adaptation evolution strategy (CMA-ES) comprises two evolution paths, one for the learning of the mutation strength and one for the rank-1 update of the covariance matrix. In this paper, it is shown that one can approximately transform this algorithm in such a manner that one of the evolution paths and the covariance matrix itself disappear. That is, the covariance update and the covariance matrix square root operations are no longer needed in this novel so-called matrix adaptation (MA) ES. The MA-ES performs nearly as well as the original CMA-ES. This is shown by empirical investigations considering the evolution dynamics and the empirical expected runtime on a set of standard test functions. Furthermore, it is shown that the MA-ES can be used as a search engine in a bi-population (BiPop) ES. The resulting BiPop-MA-ES is benchmarked using the BBOB comparing continuous optimizers (COCO) framework and compared with the performance of the CMA-ES-v3.61 production code. It is shown that this new BiPop-MA-ES-while algorithmically simpler-performs nearly equally well as the CMA-ES-v3.61 code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huizi发布了新的文献求助10
刚刚
1秒前
菠萝冰棒发布了新的文献求助10
1秒前
1秒前
请叫我风吹麦浪完成签到,获得积分0
1秒前
清爽雪枫发布了新的文献求助10
2秒前
2秒前
2秒前
李健应助斜杠武采纳,获得10
3秒前
fengxj完成签到 ,获得积分10
3秒前
3秒前
3秒前
七七给七七的求助进行了留言
3秒前
4秒前
4秒前
Hello应助冷静的平安采纳,获得10
4秒前
FKVB_完成签到 ,获得积分10
5秒前
饼饼完成签到,获得积分10
5秒前
天天快乐应助木木采纳,获得10
5秒前
艺玲发布了新的文献求助10
5秒前
大气飞丹发布了新的文献求助10
5秒前
丫丫完成签到,获得积分10
6秒前
科研通AI2S应助觅桃乌龙采纳,获得10
6秒前
耿强完成签到,获得积分10
6秒前
wanci应助dd采纳,获得10
7秒前
汉堡包应助cuihl123采纳,获得10
7秒前
李浓完成签到,获得积分10
7秒前
DreamMaker发布了新的文献求助10
7秒前
mao12wang完成签到,获得积分10
8秒前
8秒前
bdvdsrwteges发布了新的文献求助10
9秒前
如约而至发布了新的文献求助20
9秒前
纯真的莫茗完成签到,获得积分10
9秒前
彭于晏应助超11采纳,获得10
10秒前
10秒前
gavincsu发布了新的文献求助10
10秒前
KSGGS给KSGGS的求助进行了留言
10秒前
flow驳回了Aria应助
10秒前
lixiunan完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759