A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks

计算机科学 逃避(道德) 稳健性(进化) 对抗制 恶意软件 人工智能 深度学习 探测器 机器学习 人工神经网络 计算机安全 数据挖掘 电信 生物化学 生物 基因 化学 免疫学 免疫系统
作者
Kamran Shaukat,Suhuai Luo,Vijay Varadharajan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:116: 105461-105461 被引量:73
标识
DOI:10.1016/j.engappai.2022.105461
摘要

Malware is constantly evolving with rising concern for cyberspace. Deep learning-based malware detectors are being used as a potential solution. However, these detectors are vulnerable to adversarial attacks. The adversarial attacks manipulate files in such a way that the resulting malware files evade being detected. Adversarial training is one of the techniques used to develop malware detectors using saddle-point (min–max) formulation. In adversarial training, malware samples are manipulated using multiple adversarial attacks to generate adversarially poisoned malware samples. These poisoned malware samples are incorporated in the training of models to make them robust against evasion attacks (i.e. attacks at the testing time). In this work, ten neural network-based malware detectors are developed, with nine trained with a particular adversarial attack and one without such training. To consider the characteristics of multiple adversarial attacks and utilise the performance of the ten detectors on various evasion attacks, a novel approach is developed to design a malware detector by training a neural network with a mixture of multiple adversarial attacks. This novel approach achieved the best performance among all the eleven malware detectors. Experimental results demonstrated that the new approach significantly enhanced the robustness of the malware detector and achieved the lowest evasion rates of 12% on average on VirusShare and 18% on average on VXHeaven datasets, respectively, against all possible evasion attacks. The experiments show that the detectors trained with other adversarial attacks such as DeepFool and multi-step bit gradient ascent achieve higher evasion rates of 17% and 36% on VirusShare, and 24% and 45% on VXHeaven datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢谢你变体精灵完成签到,获得积分10
1秒前
1秒前
1秒前
李娟发布了新的文献求助10
1秒前
小哭包发布了新的文献求助10
2秒前
外向半青完成签到,获得积分10
3秒前
026发布了新的文献求助10
3秒前
早早发布了新的文献求助10
4秒前
4秒前
Orange应助grace采纳,获得10
4秒前
4秒前
852应助4354采纳,获得10
5秒前
浮游应助Baili采纳,获得10
6秒前
6秒前
独特秋灵应助酷酷的山雁采纳,获得10
6秒前
丘比特应助妖九笙采纳,获得10
6秒前
yang完成签到,获得积分10
8秒前
JamesPei应助此晴可待采纳,获得10
8秒前
8秒前
9秒前
顾矜应助Hah采纳,获得10
9秒前
11秒前
蜀黍发布了新的文献求助10
11秒前
12秒前
盛隆发布了新的文献求助10
12秒前
wanci应助可靠幻然采纳,获得10
12秒前
眯眯眼的世界完成签到,获得积分10
13秒前
打打应助Gu采纳,获得10
14秒前
哈哈哈发布了新的文献求助10
14秒前
丁真浩完成签到,获得积分10
15秒前
于晓露完成签到,获得积分10
15秒前
香蕉觅云应助旦皋采纳,获得10
15秒前
16秒前
sure发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
玛卡巴卡发布了新的文献求助10
17秒前
17秒前
点一个随机昵称完成签到,获得积分10
18秒前
18秒前
溯溯完成签到 ,获得积分10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981