A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks

计算机科学 逃避(道德) 稳健性(进化) 对抗制 恶意软件 人工智能 深度学习 探测器 机器学习 人工神经网络 计算机安全 数据挖掘 电信 生物化学 生物 基因 化学 免疫学 免疫系统
作者
Kamran Shaukat,Suhuai Luo,Vijay Varadharajan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:116: 105461-105461 被引量:73
标识
DOI:10.1016/j.engappai.2022.105461
摘要

Malware is constantly evolving with rising concern for cyberspace. Deep learning-based malware detectors are being used as a potential solution. However, these detectors are vulnerable to adversarial attacks. The adversarial attacks manipulate files in such a way that the resulting malware files evade being detected. Adversarial training is one of the techniques used to develop malware detectors using saddle-point (min–max) formulation. In adversarial training, malware samples are manipulated using multiple adversarial attacks to generate adversarially poisoned malware samples. These poisoned malware samples are incorporated in the training of models to make them robust against evasion attacks (i.e. attacks at the testing time). In this work, ten neural network-based malware detectors are developed, with nine trained with a particular adversarial attack and one without such training. To consider the characteristics of multiple adversarial attacks and utilise the performance of the ten detectors on various evasion attacks, a novel approach is developed to design a malware detector by training a neural network with a mixture of multiple adversarial attacks. This novel approach achieved the best performance among all the eleven malware detectors. Experimental results demonstrated that the new approach significantly enhanced the robustness of the malware detector and achieved the lowest evasion rates of 12% on average on VirusShare and 18% on average on VXHeaven datasets, respectively, against all possible evasion attacks. The experiments show that the detectors trained with other adversarial attacks such as DeepFool and multi-step bit gradient ascent achieve higher evasion rates of 17% and 36% on VirusShare, and 24% and 45% on VXHeaven datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助zsm采纳,获得10
1秒前
ljz发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
无痕完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
5秒前
神雕侠完成签到,获得积分10
6秒前
6秒前
从容的巧曼完成签到,获得积分10
7秒前
WangVera完成签到,获得积分10
8秒前
TiY完成签到,获得积分10
9秒前
木木发布了新的文献求助10
10秒前
赵雪森完成签到,获得积分10
10秒前
北风语发布了新的文献求助10
10秒前
10秒前
易达发布了新的文献求助200
11秒前
孙淼发布了新的文献求助10
14秒前
oh应助知性的雅彤采纳,获得10
15秒前
15秒前
orixero应助zhudaxia采纳,获得10
15秒前
Binbin发布了新的文献求助10
16秒前
苹果书文完成签到 ,获得积分10
16秒前
16秒前
16秒前
18秒前
哆啦小鱼完成签到,获得积分10
19秒前
Hello应助骤雨时晴采纳,获得10
19秒前
黄油曲奇Nana完成签到,获得积分10
20秒前
pcx发布了新的文献求助10
21秒前
22秒前
白色风车完成签到,获得积分10
22秒前
Bili发布了新的文献求助10
22秒前
22秒前
23秒前
百里丹珍完成签到,获得积分10
23秒前
110o发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070