A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks

计算机科学 逃避(道德) 稳健性(进化) 对抗制 恶意软件 人工智能 深度学习 探测器 机器学习 人工神经网络 计算机安全 数据挖掘 电信 生物化学 生物 基因 化学 免疫学 免疫系统
作者
Kamran Shaukat,Suhuai Luo,Vijay Varadharajan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:116: 105461-105461 被引量:73
标识
DOI:10.1016/j.engappai.2022.105461
摘要

Malware is constantly evolving with rising concern for cyberspace. Deep learning-based malware detectors are being used as a potential solution. However, these detectors are vulnerable to adversarial attacks. The adversarial attacks manipulate files in such a way that the resulting malware files evade being detected. Adversarial training is one of the techniques used to develop malware detectors using saddle-point (min–max) formulation. In adversarial training, malware samples are manipulated using multiple adversarial attacks to generate adversarially poisoned malware samples. These poisoned malware samples are incorporated in the training of models to make them robust against evasion attacks (i.e. attacks at the testing time). In this work, ten neural network-based malware detectors are developed, with nine trained with a particular adversarial attack and one without such training. To consider the characteristics of multiple adversarial attacks and utilise the performance of the ten detectors on various evasion attacks, a novel approach is developed to design a malware detector by training a neural network with a mixture of multiple adversarial attacks. This novel approach achieved the best performance among all the eleven malware detectors. Experimental results demonstrated that the new approach significantly enhanced the robustness of the malware detector and achieved the lowest evasion rates of 12% on average on VirusShare and 18% on average on VXHeaven datasets, respectively, against all possible evasion attacks. The experiments show that the detectors trained with other adversarial attacks such as DeepFool and multi-step bit gradient ascent achieve higher evasion rates of 17% and 36% on VirusShare, and 24% and 45% on VXHeaven datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助陳.采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浅尝离白应助科研通管家采纳,获得30
2秒前
HEIKU应助科研通管家采纳,获得10
2秒前
毛豆爸爸应助科研通管家采纳,获得20
2秒前
wanci应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
Br_xiaobai发布了新的文献求助30
3秒前
黄小柒发布了新的文献求助10
4秒前
4秒前
唐难破发布了新的文献求助10
4秒前
4秒前
yanhuazi发布了新的文献求助10
6秒前
honghong发布了新的文献求助30
7秒前
鲸鱼完成签到,获得积分10
8秒前
我是老大应助乐观沛白采纳,获得10
8秒前
8秒前
梓里楠木发布了新的文献求助10
9秒前
Owen应助掌柜采纳,获得10
10秒前
13秒前
14秒前
双青豆完成签到 ,获得积分10
15秒前
情怀应助陶醉的蜜蜂采纳,获得10
15秒前
16秒前
16秒前
17秒前
我是老大应助夜阑卧听采纳,获得30
17秒前
woiwxx发布了新的文献求助20
17秒前
lusuoshan完成签到,获得积分10
18秒前
凌代萱发布了新的文献求助100
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150244
求助须知:如何正确求助?哪些是违规求助? 2801374
关于积分的说明 7844178
捐赠科研通 2458888
什么是DOI,文献DOI怎么找? 1308710
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721