A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks

计算机科学 逃避(道德) 稳健性(进化) 对抗制 恶意软件 人工智能 深度学习 探测器 机器学习 人工神经网络 计算机安全 数据挖掘 电信 生物化学 生物 基因 化学 免疫学 免疫系统
作者
Kamran Shaukat,Suhuai Luo,Vijay Varadharajan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:116: 105461-105461 被引量:116
标识
DOI:10.1016/j.engappai.2022.105461
摘要

Malware is constantly evolving with rising concern for cyberspace. Deep learning-based malware detectors are being used as a potential solution. However, these detectors are vulnerable to adversarial attacks. The adversarial attacks manipulate files in such a way that the resulting malware files evade being detected. Adversarial training is one of the techniques used to develop malware detectors using saddle-point (min–max) formulation. In adversarial training, malware samples are manipulated using multiple adversarial attacks to generate adversarially poisoned malware samples. These poisoned malware samples are incorporated in the training of models to make them robust against evasion attacks (i.e. attacks at the testing time). In this work, ten neural network-based malware detectors are developed, with nine trained with a particular adversarial attack and one without such training. To consider the characteristics of multiple adversarial attacks and utilise the performance of the ten detectors on various evasion attacks, a novel approach is developed to design a malware detector by training a neural network with a mixture of multiple adversarial attacks. This novel approach achieved the best performance among all the eleven malware detectors. Experimental results demonstrated that the new approach significantly enhanced the robustness of the malware detector and achieved the lowest evasion rates of 12% on average on VirusShare and 18% on average on VXHeaven datasets, respectively, against all possible evasion attacks. The experiments show that the detectors trained with other adversarial attacks such as DeepFool and multi-step bit gradient ascent achieve higher evasion rates of 17% and 36% on VirusShare, and 24% and 45% on VXHeaven datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
helppppp发布了新的文献求助10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得30
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
aa发布了新的文献求助10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得30
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
Zx_1993应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
图图应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Hello应助漂亮夏兰采纳,获得10
2秒前
wlscj应助zwh采纳,获得20
4秒前
天天快乐应助aa采纳,获得10
4秒前
PIEZO2发布了新的文献求助10
5秒前
善学以致用应助terryok采纳,获得10
6秒前
嘉子完成签到,获得积分10
6秒前
wuwu完成签到,获得积分10
7秒前
sunshine完成签到,获得积分10
7秒前
yan1875完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337