Forces and charge analysis of a water droplet dragged by an electric field

电场 物理 机械 强度(物理) 电位 表面电荷 电荷 跳跃的 电流体力学 体积热力学 电荷(物理) 领域(数学) 原子物理学 光学 电压 热力学 数学 量子力学 纯数学 生理学 生物
作者
Yuehui Liu,Xiongwen Xu,Jinping Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (11): 112102-112102
标识
DOI:10.1063/5.0111817
摘要

Droplet removal from solid surfaces is particularly important for heat and mass transfer, corrosion protection, and certain technological requirements in production. In this study, we investigate droplet removal from a solid surface using an electric field. First, a visual platform was established to capture a video of the droplet deforming and jumping motion in an electric field, and a deformed ellipse equation was applied to fit the liquid droplet profiles. Second, the electric charge distribution was obtained, and the electric forces on the droplet surface before and after jumping were calculated. The result indicates that the charge only accumulates on the upper surface of the droplet, mostly at the top point, and the maximum charge of the 7 μl droplet is about 2 × 10 −4 μC in this experiment. The forces on the droplet are almost constant and maintain a constant acceleration (greater than 10 m/s 2 ) after leaving the surface. Third, the effects of droplet volume, electric field intensity, and electrode plate distance on droplet jumping were quantitatively studied. The experiments show that the electric field intensity required for droplet jumping is independent of the droplet volume but positive with the distance between the plates, when the distance between plates increases from 10 to 18 mm, the critical jumping electric field intensity increases by 0.1 kV/mm. The droplet acceleration decreases by about 20% with the increase in volume (5–10 μl) but increases with the increase in electric field intensity. The charge increases with the increase in electric field intensity, but the charge–mass ratio decreases by about 30% with the increase in volume (5–10 μl). Finally, the results show that a small volume and plate distance are more favorable to stimulating the droplets jumping under the electric field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助mimi采纳,获得10
1秒前
学术小菜鸟完成签到 ,获得积分10
1秒前
1秒前
真实的俊驰完成签到,获得积分10
1秒前
平淡的蜻蜓完成签到,获得积分10
2秒前
2秒前
Vii应助宋宋宋2采纳,获得10
3秒前
胡天萌发布了新的文献求助10
4秒前
Grinder完成签到 ,获得积分10
5秒前
MADKAI发布了新的文献求助20
5秒前
圆滑的铁勺完成签到,获得积分10
6秒前
6秒前
6秒前
zhangting完成签到,获得积分10
7秒前
AAAAAAAAAAA完成签到,获得积分10
7秒前
vvvvvvv完成签到,获得积分10
7秒前
7秒前
wanyanjin应助1111采纳,获得10
7秒前
gaos发布了新的文献求助10
8秒前
小吴完成签到,获得积分10
9秒前
迟大猫应助Star1983采纳,获得10
9秒前
chinning完成签到,获得积分10
10秒前
Mon_zh发布了新的文献求助20
10秒前
10秒前
漂亮送终完成签到,获得积分10
10秒前
朴素篮球发布了新的文献求助10
11秒前
天才完成签到 ,获得积分10
11秒前
不喝可乐发布了新的文献求助10
11秒前
12秒前
皮尤尤发布了新的文献求助10
12秒前
13秒前
道中道完成签到,获得积分10
14秒前
14秒前
知之然完成签到,获得积分10
14秒前
研友_n2QP2L完成签到,获得积分10
14秒前
Lucas应助安静听白采纳,获得10
14秒前
CC发布了新的文献求助10
14秒前
星辰大海应助系统提示采纳,获得10
15秒前
15秒前
sss完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678