Forces and charge analysis of a water droplet dragged by an electric field

电场 物理 机械 强度(物理) 电位 表面电荷 电荷 跳跃的 电流体力学 体积热力学 电荷(物理) 领域(数学) 原子物理学 光学 电压 热力学 数学 量子力学 纯数学 生理学 生物
作者
Yuehui Liu,Xiongwen Xu,Jinping Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (11): 112102-112102
标识
DOI:10.1063/5.0111817
摘要

Droplet removal from solid surfaces is particularly important for heat and mass transfer, corrosion protection, and certain technological requirements in production. In this study, we investigate droplet removal from a solid surface using an electric field. First, a visual platform was established to capture a video of the droplet deforming and jumping motion in an electric field, and a deformed ellipse equation was applied to fit the liquid droplet profiles. Second, the electric charge distribution was obtained, and the electric forces on the droplet surface before and after jumping were calculated. The result indicates that the charge only accumulates on the upper surface of the droplet, mostly at the top point, and the maximum charge of the 7 μl droplet is about 2 × 10 −4 μC in this experiment. The forces on the droplet are almost constant and maintain a constant acceleration (greater than 10 m/s 2 ) after leaving the surface. Third, the effects of droplet volume, electric field intensity, and electrode plate distance on droplet jumping were quantitatively studied. The experiments show that the electric field intensity required for droplet jumping is independent of the droplet volume but positive with the distance between the plates, when the distance between plates increases from 10 to 18 mm, the critical jumping electric field intensity increases by 0.1 kV/mm. The droplet acceleration decreases by about 20% with the increase in volume (5–10 μl) but increases with the increase in electric field intensity. The charge increases with the increase in electric field intensity, but the charge–mass ratio decreases by about 30% with the increase in volume (5–10 μl). Finally, the results show that a small volume and plate distance are more favorable to stimulating the droplets jumping under the electric field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
1秒前
竹筏过海应助科研通管家采纳,获得50
1秒前
无花果应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
WANG发布了新的文献求助10
1秒前
Rollei发布了新的文献求助10
2秒前
lllliuxxx完成签到 ,获得积分10
3秒前
852应助一一一采纳,获得10
4秒前
顺顺完成签到,获得积分10
6秒前
6秒前
7秒前
大个应助will采纳,获得30
7秒前
7秒前
actor2006完成签到,获得积分10
9秒前
圆圆发布了新的文献求助30
9秒前
an发布了新的文献求助10
10秒前
成就的面包完成签到,获得积分10
10秒前
waters发布了新的文献求助10
11秒前
xuanqing发布了新的文献求助10
11秒前
慕新发布了新的文献求助10
13秒前
13秒前
15秒前
纳米大亨完成签到,获得积分10
15秒前
15秒前
不配.应助正直博涛采纳,获得10
15秒前
hututu应助下文献采纳,获得10
17秒前
17秒前
纳米大亨发布了新的文献求助10
18秒前
一一一发布了新的文献求助10
18秒前
18秒前
CodeCraft应助成就的面包采纳,获得10
19秒前
专注煜祺发布了新的文献求助10
20秒前
ding应助简单的惋庭采纳,获得10
21秒前
闪闪的宛海完成签到,获得积分20
21秒前
柚子发布了新的文献求助10
22秒前
丘比特应助Alisa采纳,获得10
23秒前
善良芙发布了新的文献求助10
24秒前
24秒前
flugel完成签到,获得积分10
26秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329329
求助须知:如何正确求助?哪些是违规求助? 2959023
关于积分的说明 8593998
捐赠科研通 2637470
什么是DOI,文献DOI怎么找? 1443549
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656146