Light-Driven Liquid Conveyors: Manipulating Liquid Mobility and Transporting Solids on Demand

材料科学 纳米技术 微流控 电流体力学 偶氮苯 微加工 光异构化 光电子学 异构化 化学 聚合物 制作 复合材料 电极 替代医学 物理化学 病理 医学 生物化学 催化作用
作者
Kengo Manabe,Koichiro Saito,Miki Nakano,Takuya Ohzono,Yasuo Norikane
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (10): 16353-16362 被引量:18
标识
DOI:10.1021/acsnano.2c05524
摘要

The intelligent transport of materials at interfaces is essential for a wide range of processes, including chemical microreactions, bioanalysis, and microfabrication. Both passive and active methods have been used to transport droplets, among which light-based techniques have attracted much attention because they are noncontact, safe, reversible, and controllable. However, conventional light-driven systems also involve challenges related to low transport ability and instability. Because of these shortcomings, technologies that can transport and manipulate droplets and microsolids on the same surface have yet to be realized. The present work demonstrates a light-driven system referred to as a liquid conveyor that enables the transport of both water droplets and microsolids. After the incorporation of an azobenzene-based molecular motor capable of undergoing photoisomerization into the surface liquid layer of this system, an isomerization gradient was induced by exposure to ultraviolet light emitting diodes that induced flow in this layer. Various parameters were optimized, including the concentration of the molecular motor compound, the light intensity, the viscosity of the liquid layer, and the droplet volume. This process eventually achieved the horizontal transport of droplets in any direction at varied rates. As a consequence of the limited heat buildup, the lack of droplet deformation, and extremely small contact angle hysteresis in this system, microsolids on droplets were also transported. This liquid conveyor is a promising platform for high-throughput omni-liquid/solid manipulation in the fields of biotechnology, chemistry, and mechanical engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助Theo采纳,获得10
刚刚
CCC发布了新的文献求助10
刚刚
华仔应助完美的海秋采纳,获得30
1秒前
奋斗的友儿完成签到,获得积分10
3秒前
wen完成签到,获得积分20
4秒前
西雅完成签到,获得积分10
4秒前
chengzi完成签到,获得积分10
4秒前
新酱完成签到,获得积分10
5秒前
小白完成签到 ,获得积分20
5秒前
smj完成签到,获得积分10
6秒前
treelet007发布了新的文献求助10
10秒前
真诚李完成签到,获得积分20
13秒前
赘婿应助zmw采纳,获得30
14秒前
16秒前
油麦完成签到 ,获得积分10
17秒前
山上的树完成签到 ,获得积分10
17秒前
马1112发布了新的文献求助20
19秒前
Ava应助二三采纳,获得10
20秒前
clearsky完成签到,获得积分20
21秒前
21秒前
隐形曼青应助LCC采纳,获得10
23秒前
寄托完成签到 ,获得积分10
23秒前
24秒前
马上毕业完成签到,获得积分10
24秒前
钟于发布了新的文献求助10
25秒前
zm完成签到,获得积分10
26秒前
香蕉觅云应助斯文的涵双采纳,获得30
27秒前
iNk应助Theo采纳,获得10
28秒前
Sicily发布了新的文献求助10
31秒前
在水一方应助yyy采纳,获得10
31秒前
马上毕业发布了新的文献求助10
32秒前
麦兜完成签到 ,获得积分10
33秒前
脑洞疼应助钟于采纳,获得10
33秒前
kimihee完成签到,获得积分10
34秒前
BYN完成签到 ,获得积分10
35秒前
jxp完成签到,获得积分10
37秒前
fedehe完成签到 ,获得积分10
37秒前
李爱国应助公主抡大锤采纳,获得10
39秒前
今后应助傲娇思真采纳,获得10
40秒前
思源应助Xu采纳,获得10
40秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242704
求助须知:如何正确求助?哪些是违规求助? 2886962
关于积分的说明 8245419
捐赠科研通 2555512
什么是DOI,文献DOI怎么找? 1383601
科研通“疑难数据库(出版商)”最低求助积分说明 649728
邀请新用户注册赠送积分活动 625605