Deep learning-assisted real-time defect detection and closed-loop adjustment for additive manufacturing of continuous fiber-reinforced polymer composites

材料科学 磨损(机械) 人工智能 计算机科学 纤维 过程(计算) 碳纤维增强聚合物 制作 闭环 复合数 复合材料 控制工程 工程类 病理 替代医学 操作系统 医学
作者
Lu Lu,Jie Hou,Shangqin Yuan,Xiling Yao,Yamin Li,Jihong Zhu
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:79: 102431-102431 被引量:60
标识
DOI:10.1016/j.rcim.2022.102431
摘要

Real-time defect detection and closed-loop adjustment of additive manufacturing (AM) are essential to ensure the quality of as-fabricated products, especially for carbon fiber reinforced polymer (CFRP) composites via AM. Machine learning is typically limited to the application of online monitoring of AM systems due to a lack of accurate and accessible databases. In this work, a system is developed for real-time identification of defective regions, and closed-loop adjustment of process parameters for robot-based CFRP AM is validated. The main novelty is the development of a deep learning model for defect detection, classification, and evaluation in real-time with high accuracy. The proposed method is able to identify two types of CFRP defects (i.e., misalignment and abrasion). The combined deep learning with geometric analysis of the level of misalignment is applied to quantify the severity of individual defects. A deep learning approach is successfully developed for the online detection of defects, and the defects are effectively controlled by closed-loop adjustment of process parameters, which is never achievable in any conventional methods of composite fabrication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8R60d8应助开心听露采纳,获得10
2秒前
3秒前
优美的孤云完成签到,获得积分10
3秒前
AZX加油完成签到,获得积分10
3秒前
清风发布了新的文献求助10
3秒前
闻歌发布了新的文献求助10
4秒前
Hello应助WWXWWX采纳,获得10
4秒前
香蕉觅云应助WWXWWX采纳,获得10
4秒前
打打应助WWXWWX采纳,获得10
4秒前
5秒前
CipherSage应助谦让玲采纳,获得10
6秒前
6秒前
8秒前
开心听露完成签到,获得积分10
8秒前
清新的寄翠完成签到 ,获得积分10
8秒前
wanci应助fouli采纳,获得10
9秒前
9秒前
9秒前
千里发布了新的文献求助10
10秒前
zhogwe完成签到,获得积分10
11秒前
NexusExplorer应助闻歌采纳,获得10
11秒前
勤恳完成签到,获得积分10
12秒前
科目三应助yangfeidong采纳,获得10
13秒前
13秒前
飞飞鸟鸟与鱼完成签到,获得积分20
13秒前
苏苏苏发布了新的文献求助10
14秒前
14秒前
14秒前
侯田华发布了新的文献求助10
15秒前
不安秋荷发布了新的文献求助10
15秒前
晴空万里完成签到,获得积分10
16秒前
17秒前
乐乐应助mug采纳,获得10
19秒前
19秒前
FashionBoy应助聪明的宛菡采纳,获得10
20秒前
20秒前
20秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143538
求助须知:如何正确求助?哪些是违规求助? 2794891
关于积分的说明 7812770
捐赠科研通 2451061
什么是DOI,文献DOI怎么找? 1304203
科研通“疑难数据库(出版商)”最低求助积分说明 627207
版权声明 601386