MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LH发布了新的文献求助10
刚刚
小月月发布了新的文献求助10
刚刚
波波冰发布了新的文献求助10
1秒前
紫色奶萨完成签到,获得积分10
1秒前
1秒前
四糸乃发布了新的文献求助10
1秒前
脑洞疼应助小京子采纳,获得10
2秒前
2秒前
赚钱的君完成签到,获得积分10
3秒前
VVTTWW完成签到 ,获得积分10
3秒前
淡淡乐巧完成签到 ,获得积分10
3秒前
MrZ1完成签到,获得积分10
3秒前
4秒前
专注邴完成签到,获得积分10
4秒前
123发布了新的文献求助10
4秒前
satuo完成签到,获得积分10
4秒前
5秒前
果儿完成签到 ,获得积分10
5秒前
5秒前
5秒前
曈梦发布了新的文献求助10
6秒前
熊子文完成签到 ,获得积分10
6秒前
英子完成签到,获得积分10
6秒前
跳跃乘风完成签到,获得积分10
6秒前
7秒前
jingyu841123完成签到,获得积分10
7秒前
yyyu发布了新的文献求助10
7秒前
熏辣带鱼关注了科研通微信公众号
8秒前
木易北北发布了新的文献求助30
8秒前
科研通AI6应助微笑的问凝采纳,获得10
9秒前
9秒前
orixero应助QWER采纳,获得10
9秒前
小女子常戚戚完成签到,获得积分10
9秒前
初一完成签到,获得积分10
10秒前
lj驳回了FashionBoy应助
10秒前
搜集达人应助丁岩采纳,获得10
11秒前
K0h发布了新的文献求助10
11秒前
152van完成签到,获得积分20
11秒前
涂一凡发布了新的文献求助10
11秒前
12秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388268
求助须知:如何正确求助?哪些是违规求助? 4510318
关于积分的说明 14034886
捐赠科研通 4421132
什么是DOI,文献DOI怎么找? 2428650
邀请新用户注册赠送积分活动 1421284
关于科研通互助平台的介绍 1400517