MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪聪great完成签到,获得积分20
刚刚
yx发布了新的文献求助10
刚刚
随心完成签到 ,获得积分10
1秒前
1秒前
浮游应助Sere采纳,获得10
2秒前
wlnhyF发布了新的文献求助10
2秒前
4892完成签到 ,获得积分10
3秒前
3秒前
害羞的镜子完成签到,获得积分10
3秒前
顾矜应助踏实的酸奶采纳,获得10
3秒前
3秒前
千影发布了新的文献求助10
3秒前
4秒前
ARIA发布了新的文献求助10
5秒前
lilili应助猪猪hero采纳,获得10
5秒前
共享精神应助简单灵凡采纳,获得10
6秒前
6秒前
zhou发布了新的文献求助10
8秒前
酷波er应助DJ采纳,获得10
10秒前
10秒前
日暮里发布了新的文献求助10
10秒前
10秒前
10秒前
wy.he应助ShengzhangLiu采纳,获得10
10秒前
杜青发布了新的文献求助10
11秒前
szh123完成签到,获得积分10
11秒前
yeah18完成签到,获得积分10
11秒前
式微完成签到,获得积分10
12秒前
Mic应助猪猪hero采纳,获得10
13秒前
土5完成签到,获得积分20
13秒前
14秒前
万能图书馆应助千影采纳,获得10
14秒前
旅行者发布了新的文献求助10
14秒前
深情安青应助愤怒的鲨鱼采纳,获得10
14秒前
着急的白柏完成签到,获得积分10
15秒前
15秒前
byumi发布了新的文献求助10
15秒前
寒冷威发布了新的文献求助10
16秒前
13201099463发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776