MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二三发布了新的文献求助10
刚刚
刘沛鑫完成签到,获得积分10
1秒前
2秒前
淡淡土豆应助記yian采纳,获得10
2秒前
zzcherished发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
lchenbio完成签到,获得积分10
4秒前
刘沛鑫发布了新的文献求助10
4秒前
Akim应助小树苗采纳,获得20
5秒前
6秒前
6秒前
极品男大完成签到,获得积分10
6秒前
6秒前
yznfly应助Yangyang采纳,获得200
6秒前
7秒前
赘婿应助天真千易采纳,获得10
7秒前
田様应助天真千易采纳,获得10
7秒前
在水一方应助天真千易采纳,获得10
7秒前
传奇3应助天真千易采纳,获得10
7秒前
8秒前
Orange应助小哥采纳,获得10
8秒前
8秒前
无花果应助加减乘除采纳,获得10
8秒前
xiaojie2024发布了新的文献求助10
9秒前
10秒前
ww发布了新的文献求助10
11秒前
高兴的羊发布了新的文献求助10
12秒前
大海发布了新的文献求助10
12秒前
了了发布了新的文献求助10
13秒前
kidney发布了新的文献求助10
13秒前
小二郎应助天真千易采纳,获得10
14秒前
Lucas应助天真千易采纳,获得10
14秒前
Hello应助天真千易采纳,获得10
14秒前
小二郎应助天真千易采纳,获得10
14秒前
14秒前
搜集达人应助天真千易采纳,获得10
14秒前
万能图书馆应助天真千易采纳,获得10
14秒前
小二郎应助雪白摇伽采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525236
求助须知:如何正确求助?哪些是违规求助? 4615551
关于积分的说明 14548959
捐赠科研通 4553590
什么是DOI,文献DOI怎么找? 2495405
邀请新用户注册赠送积分活动 1475947
关于科研通互助平台的介绍 1447675