MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助远荒采纳,获得10
刚刚
光亮书雪完成签到,获得积分20
1秒前
小石榴的爸爸完成签到 ,获得积分10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
小石榴爸爸完成签到 ,获得积分10
8秒前
weiwei完成签到 ,获得积分10
10秒前
陈雨完成签到,获得积分10
10秒前
远荒发布了新的文献求助10
14秒前
等待念之完成签到,获得积分10
17秒前
噗愣噗愣地刚发芽完成签到 ,获得积分10
18秒前
万默完成签到 ,获得积分10
18秒前
鱼鱼鱼鱼完成签到 ,获得积分10
19秒前
浊轶完成签到 ,获得积分10
20秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
真水无香123完成签到,获得积分10
24秒前
26秒前
远荒完成签到,获得积分10
26秒前
慧子完成签到,获得积分10
27秒前
28秒前
C陈完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
33秒前
量子星尘发布了新的文献求助10
38秒前
000完成签到 ,获得积分10
45秒前
BINBIN完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
52秒前
54秒前
行者在远方完成签到 ,获得积分10
55秒前
Sandy完成签到 ,获得积分10
56秒前
57秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
平常的三问完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658393
求助须知:如何正确求助?哪些是违规求助? 4821276
关于积分的说明 15081407
捐赠科研通 4816884
什么是DOI,文献DOI怎么找? 2577809
邀请新用户注册赠送积分活动 1532635
关于科研通互助平台的介绍 1491328