MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘小源发布了新的文献求助20
刚刚
杨晓毅发布了新的文献求助10
1秒前
脑洞疼应助义气的海瑶采纳,获得10
1秒前
斯文败类应助火龙果采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
淀粉肠发布了新的文献求助10
3秒前
Alan发布了新的文献求助10
4秒前
4秒前
张张张完成签到 ,获得积分10
5秒前
TiuTiu关注了科研通微信公众号
5秒前
纯真书兰完成签到,获得积分10
6秒前
严昌发布了新的文献求助10
6秒前
DD完成签到,获得积分10
6秒前
ChengxinXie完成签到,获得积分20
6秒前
Hannah发布了新的文献求助10
6秒前
lss发布了新的文献求助10
7秒前
万能图书馆应助策略采纳,获得10
7秒前
陆仓颉完成签到,获得积分10
8秒前
花生发布了新的文献求助10
8秒前
今后应助缓慢修杰采纳,获得10
8秒前
小二郎应助知了采纳,获得10
8秒前
富贵儿发布了新的文献求助10
9秒前
9秒前
tyler2000完成签到,获得积分10
10秒前
shan完成签到,获得积分10
10秒前
乐乐应助xiaomili采纳,获得10
11秒前
婷崽加油完成签到,获得积分10
11秒前
南风发布了新的文献求助10
11秒前
拉长的问晴完成签到,获得积分10
12秒前
loin完成签到,获得积分10
13秒前
13秒前
抹茶泡泡完成签到 ,获得积分10
13秒前
tyler2000发布了新的文献求助10
14秒前
南至发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620