清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
自然亦凝完成签到,获得积分10
18秒前
Xuz完成签到 ,获得积分10
37秒前
Able完成签到,获得积分10
1分钟前
poki完成签到 ,获得积分10
1分钟前
1分钟前
半晴发布了新的文献求助10
1分钟前
1分钟前
半晴完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zzhui完成签到,获得积分10
2分钟前
Veritas发布了新的文献求助10
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
方白秋完成签到,获得积分0
3分钟前
北辰zdx完成签到,获得积分10
3分钟前
3分钟前
佳佳发布了新的文献求助10
3分钟前
丘比特应助佳佳采纳,获得10
4分钟前
Criminology34发布了新的文献求助500
4分钟前
jason完成签到,获得积分0
4分钟前
木冉完成签到 ,获得积分10
4分钟前
Kevin完成签到 ,获得积分10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
忘忧Aquarius完成签到,获得积分10
6分钟前
和风完成签到 ,获得积分10
7分钟前
不能吃太饱完成签到 ,获得积分10
7分钟前
合不着完成签到 ,获得积分10
7分钟前
852应助leonzhou采纳,获得10
8分钟前
酷波er应助yf采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651157
求助须知:如何正确求助?哪些是违规求助? 4783465
关于积分的说明 15053182
捐赠科研通 4809854
什么是DOI,文献DOI怎么找? 2572711
邀请新用户注册赠送积分活动 1528665
关于科研通互助平台的介绍 1487687