MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gj2221423完成签到 ,获得积分10
1秒前
罗氏集团完成签到,获得积分10
2秒前
栋仔完成签到,获得积分10
3秒前
缘分完成签到,获得积分0
3秒前
zzl7337完成签到,获得积分10
4秒前
wnll发布了新的文献求助10
5秒前
7秒前
qqqdewq完成签到,获得积分10
8秒前
BowieHuang应助SUNYAOSUNYAO采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
陈荣完成签到 ,获得积分10
8秒前
坚定的小蘑菇完成签到 ,获得积分10
9秒前
俏皮的书白完成签到,获得积分20
10秒前
sll完成签到 ,获得积分10
10秒前
fissh完成签到,获得积分10
11秒前
júpiter完成签到,获得积分10
13秒前
丫丫完成签到 ,获得积分10
13秒前
Lianna完成签到 ,获得积分10
13秒前
13秒前
allover完成签到,获得积分10
14秒前
Nan发布了新的文献求助10
16秒前
小文殊完成签到 ,获得积分10
18秒前
小蘑菇应助义气若菱采纳,获得10
19秒前
风趣亦巧完成签到 ,获得积分10
19秒前
自强不息完成签到 ,获得积分10
21秒前
喵喵完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
21秒前
心灵尔安完成签到,获得积分10
22秒前
ys完成签到 ,获得积分10
22秒前
予秋发布了新的文献求助10
24秒前
SUNYAOSUNYAO完成签到,获得积分20
26秒前
辛勤谷雪完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
结实小天鹅完成签到 ,获得积分10
28秒前
七QI完成签到 ,获得积分10
31秒前
潦草小狗完成签到 ,获得积分10
32秒前
爬行风完成签到,获得积分10
33秒前
萌仔完成签到 ,获得积分10
35秒前
11号迪西馅饼完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715621
求助须知:如何正确求助?哪些是违规求助? 5235764
关于积分的说明 15274658
捐赠科研通 4866353
什么是DOI,文献DOI怎么找? 2612926
邀请新用户注册赠送积分活动 1563081
关于科研通互助平台的介绍 1520565