MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶燕完成签到 ,获得积分10
刚刚
煎饼果子完成签到 ,获得积分10
刚刚
xiaoguo完成签到,获得积分10
刚刚
温润如玉坤完成签到,获得积分10
刚刚
烟花应助yang采纳,获得10
刚刚
hahada完成签到,获得积分10
刚刚
jifu完成签到,获得积分10
刚刚
LXT发布了新的文献求助10
1秒前
CXSCXD完成签到,获得积分10
1秒前
科目三应助和风采纳,获得10
1秒前
ZM完成签到,获得积分10
2秒前
健脊护柱完成签到 ,获得积分10
3秒前
布布完成签到,获得积分10
3秒前
欢呼寻冬完成签到 ,获得积分10
4秒前
燕燕完成签到,获得积分10
4秒前
轩轩完成签到,获得积分10
5秒前
不会游泳的鱼完成签到,获得积分10
5秒前
专注灵凡完成签到,获得积分10
6秒前
星星完成签到 ,获得积分10
6秒前
7秒前
七子完成签到,获得积分10
7秒前
又又完成签到 ,获得积分10
7秒前
Amy完成签到,获得积分10
8秒前
陈永伟完成签到,获得积分10
8秒前
平淡的火龙果完成签到,获得积分10
8秒前
lee完成签到,获得积分10
9秒前
9秒前
Homura完成签到,获得积分10
9秒前
future完成签到 ,获得积分10
9秒前
北海完成签到,获得积分10
10秒前
10秒前
文章快快来完成签到,获得积分10
11秒前
乐观的忆枫完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
lmq完成签到 ,获得积分10
12秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
聪慧小霜应助科研通管家采纳,获得10
13秒前
chaos完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365