清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
半夏发布了新的文献求助10
14秒前
leapper完成签到,获得积分10
27秒前
黑摄会阿Fay完成签到,获得积分10
35秒前
无悔完成签到 ,获得积分10
1分钟前
drirshad完成签到,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
雪山飞龙完成签到,获得积分10
3分钟前
V_I_G完成签到 ,获得积分10
3分钟前
科研通AI2S应助滨滨采纳,获得10
4分钟前
4分钟前
滨滨发布了新的文献求助30
4分钟前
忘忧Aquarius完成签到,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助150
4分钟前
王波完成签到 ,获得积分10
5分钟前
5分钟前
滨滨发布了新的文献求助10
5分钟前
奋斗雅香完成签到 ,获得积分10
6分钟前
DrCuiTianjin完成签到 ,获得积分10
6分钟前
爆米花应助科研通管家采纳,获得10
6分钟前
7分钟前
滨滨发布了新的文献求助10
7分钟前
CJW完成签到 ,获得积分10
8分钟前
jjgbmt完成签到 ,获得积分10
8分钟前
研友_nxw2xL完成签到,获得积分10
8分钟前
muriel完成签到,获得积分0
8分钟前
如歌完成签到,获得积分10
8分钟前
萌兴完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
LINDENG2004完成签到 ,获得积分10
10分钟前
弦和发布了新的文献求助10
10分钟前
vbnn完成签到 ,获得积分10
10分钟前
搜集达人应助弦和采纳,获得10
10分钟前
蝎子莱莱xth完成签到,获得积分10
10分钟前
拼搏的帽子完成签到 ,获得积分10
10分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5065638
求助须知:如何正确求助?哪些是违规求助? 4288187
关于积分的说明 13359726
捐赠科研通 4107037
什么是DOI,文献DOI怎么找? 2248956
邀请新用户注册赠送积分活动 1254477
关于科研通互助平台的介绍 1186315