已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wutang发布了新的文献求助30
3秒前
帅气雨珍发布了新的文献求助30
5秒前
知返完成签到 ,获得积分10
5秒前
Liang发布了新的文献求助10
6秒前
戏子完成签到,获得积分10
8秒前
稻草人完成签到 ,获得积分10
9秒前
鲤鱼谷秋完成签到 ,获得积分10
11秒前
BowieHuang应助坚硬的刚地刺采纳,获得10
16秒前
18秒前
wang5945完成签到 ,获得积分10
19秒前
han发布了新的文献求助10
20秒前
lanlan完成签到 ,获得积分10
22秒前
方向完成签到 ,获得积分10
22秒前
vvvvba0202发布了新的文献求助10
23秒前
帅气雨珍完成签到,获得积分10
27秒前
开心点完成签到 ,获得积分10
31秒前
BeBrave1028完成签到,获得积分10
32秒前
36秒前
wutang完成签到,获得积分20
38秒前
壮观复天完成签到 ,获得积分10
44秒前
科研通AI6应助木耳采纳,获得10
45秒前
abc完成签到 ,获得积分0
46秒前
laoyuweng完成签到,获得积分10
48秒前
华仔应助小王采纳,获得10
49秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
科研通AI6应助科研通管家采纳,获得10
51秒前
51秒前
CR7完成签到,获得积分10
53秒前
55秒前
57秒前
木耳完成签到,获得积分10
1分钟前
闹海发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小王发布了新的文献求助10
1分钟前
Abdurrahman完成签到,获得积分10
1分钟前
1分钟前
njau2005完成签到,获得积分10
1分钟前
小王完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561148
求助须知:如何正确求助?哪些是违规求助? 4646282
关于积分的说明 14678270
捐赠科研通 4587573
什么是DOI,文献DOI怎么找? 2517131
邀请新用户注册赠送积分活动 1490439
关于科研通互助平台的介绍 1461321