已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊力扎提发布了新的文献求助10
2秒前
洁净的千凡完成签到 ,获得积分20
2秒前
小二郎应助lili采纳,获得10
3秒前
任无施发布了新的文献求助10
3秒前
5秒前
梦梦关注了科研通微信公众号
8秒前
小橘子吃傻子完成签到,获得积分10
9秒前
斯文败类应助liwen采纳,获得10
11秒前
12秒前
6666应助佛光辉采纳,获得10
12秒前
李健的小迷弟应助任无施采纳,获得10
14秒前
14秒前
桐桐应助海大彭于晏采纳,获得10
15秒前
少年锦时完成签到,获得积分10
15秒前
白泽发布了新的文献求助10
18秒前
18秒前
lili发布了新的文献求助10
19秒前
19秒前
EternalStrider完成签到,获得积分10
21秒前
梦梦发布了新的文献求助10
22秒前
cmf完成签到 ,获得积分10
26秒前
27秒前
Criminology34应助伊力扎提采纳,获得10
27秒前
29秒前
xiaoguoxiaoguo完成签到,获得积分10
31秒前
科研通AI6应助inRe采纳,获得30
31秒前
lululemontree发布了新的文献求助10
31秒前
33秒前
英姑应助开放的千青采纳,获得10
33秒前
白泽完成签到,获得积分10
38秒前
cenghao给cenghao的求助进行了留言
39秒前
40秒前
lili完成签到,获得积分10
42秒前
44秒前
qing_li完成签到,获得积分10
45秒前
45秒前
miaomiao123完成签到 ,获得积分10
46秒前
liwen发布了新的文献求助10
47秒前
勤劳凌青发布了新的文献求助20
47秒前
小蛇玩完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910