MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
叮咚jingle完成签到,获得积分10
1秒前
1秒前
lfc完成签到 ,获得积分10
2秒前
xz应助威武的皮卡丘采纳,获得10
2秒前
Su完成签到,获得积分10
2秒前
2秒前
俞儿发布了新的文献求助10
2秒前
zq完成签到,获得积分10
2秒前
a1313发布了新的文献求助10
3秒前
开心仙人掌完成签到,获得积分10
3秒前
精明觅荷完成签到,获得积分10
3秒前
3秒前
4秒前
传奇3应助谦让初柳采纳,获得10
4秒前
一只兔子发布了新的文献求助10
5秒前
5秒前
xshuang完成签到,获得积分10
5秒前
明理囧完成签到 ,获得积分10
6秒前
大模型应助ivy采纳,获得10
6秒前
科目三应助xwxhbydmet采纳,获得10
7秒前
993494543发布了新的文献求助10
7秒前
ZHL应助CNYDNZB采纳,获得10
7秒前
sia完成签到,获得积分10
8秒前
猫男爵发布了新的文献求助10
8秒前
8秒前
YuTaoYing发布了新的文献求助10
8秒前
凝雁完成签到,获得积分10
9秒前
amanda举报超级听南求助涉嫌违规
9秒前
9秒前
科研通AI6应助yangyang采纳,获得10
10秒前
Zen完成签到,获得积分10
10秒前
Calvin-funsom完成签到,获得积分10
10秒前
英俊的铭应助虚心的大树采纳,获得10
10秒前
寻道图强应助ceeray23采纳,获得200
10秒前
迎风竹林下应助kokodayour采纳,获得10
11秒前
12秒前
CipherSage应助空谷幽兰采纳,获得10
12秒前
等天黑完成签到,获得积分10
13秒前
shea完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284