MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
freebird发布了新的文献求助10
2秒前
2秒前
3秒前
楚寅完成签到 ,获得积分0
3秒前
3秒前
4秒前
爱爱精神境界完成签到,获得积分20
4秒前
许熙发布了新的文献求助10
6秒前
mumian发布了新的文献求助10
6秒前
6秒前
复杂的海发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
开朗发布了新的文献求助10
8秒前
aaa发布了新的文献求助10
10秒前
xh完成签到,获得积分10
10秒前
12秒前
1900th发布了新的文献求助10
12秒前
Meng发布了新的文献求助10
12秒前
CodeCraft应助小程别放弃采纳,获得10
13秒前
qhrjsxx发布了新的文献求助10
13秒前
JamesPei应助陈霞霞采纳,获得10
13秒前
huang发布了新的文献求助10
14秒前
shh发布了新的文献求助10
14秒前
睡不醒的网完成签到,获得积分10
14秒前
14秒前
水123发布了新的文献求助10
15秒前
Ava应助爱爱精神境界采纳,获得10
15秒前
17秒前
aaa完成签到,获得积分10
17秒前
傲娇雅蕊完成签到 ,获得积分10
18秒前
小马发布了新的文献求助10
19秒前
难过的班完成签到,获得积分10
20秒前
无极微光应助曾丹么么哒采纳,获得20
20秒前
mjc完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814