亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction

计算机科学 判别式 嵌入 人工智能 集成学习 机器学习 图形 分类器(UML) 特征学习 关系(数据库) 环状RNA 模式识别(心理学) 数据挖掘 理论计算机科学 核糖核酸 生物 基因 生物化学
作者
Qunzhuo Wu,Zhaohong Deng,Xiaoyong Pan,Hong‐Bin Shen,Kup‐Sze Choi,Shitong Wang,Jing Wu,Dong‐Jun Yu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac289
摘要

Circular RNA (circRNA) is closely involved in physiological and pathological processes of many diseases. Discovering the associations between circRNAs and diseases is of great significance. Due to the high-cost to verify the circRNA-disease associations by wet-lab experiments, computational approaches for predicting the associations become a promising research direction. In this paper, we propose a method, MDGF-MCEC, based on multi-view dual attention graph convolution network (GCN) with cooperative ensemble learning to predict circRNA-disease associations. First, MDGF-MCEC constructs two disease relation graphs and two circRNA relation graphs based on different similarities. Then, the relation graphs are fed into a multi-view GCN for representation learning. In order to learn high discriminative features, a dual-attention mechanism is introduced to adjust the contribution weights, at both channel level and spatial level, of different features. Based on the learned embedding features of diseases and circRNAs, nine different feature combinations between diseases and circRNAs are treated as new multi-view data. Finally, we construct a multi-view cooperative ensemble classifier to predict the associations between circRNAs and diseases. Experiments conducted on the CircR2Disease database demonstrate that the proposed MDGF-MCEC model achieves a high area under curve of 0.9744 and outperforms the state-of-the-art methods. Promising results are also obtained from experiments on the circ2Disease and circRNADisease databases. Furthermore, the predicted associated circRNAs for hepatocellular carcinoma and gastric cancer are supported by the literature. The code and dataset of this study are available at https://github.com/ABard0/MDGF-MCEC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
festum完成签到,获得积分10
4秒前
彭于晏应助计划采纳,获得10
7秒前
10秒前
12秒前
计划发布了新的文献求助10
17秒前
23秒前
catherine完成签到,获得积分10
27秒前
33秒前
jubouwang发布了新的文献求助10
40秒前
ataybabdallah完成签到,获得积分10
54秒前
1分钟前
害羞龙猫完成签到 ,获得积分10
1分钟前
善学以致用应助Yeung采纳,获得10
1分钟前
小星星完成签到 ,获得积分10
1分钟前
学术扛把子完成签到 ,获得积分10
1分钟前
1分钟前
迷路筝发布了新的文献求助10
1分钟前
1分钟前
迷路筝完成签到,获得积分10
1分钟前
欣5发布了新的文献求助10
1分钟前
1分钟前
李健应助yyds采纳,获得10
1分钟前
2分钟前
鱼肉蛋奶发布了新的文献求助10
2分钟前
传奇3应助yyds采纳,获得10
2分钟前
2分钟前
2分钟前
鱼肉蛋奶完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
大庆完成签到,获得积分10
3分钟前
PinKing完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256956
求助须知:如何正确求助?哪些是违规求助? 2899010
关于积分的说明 8303245
捐赠科研通 2568229
什么是DOI,文献DOI怎么找? 1394995
科研通“疑难数据库(出版商)”最低求助积分说明 652925
邀请新用户注册赠送积分活动 630662