亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of machine learning algorithms in suicide risk prediction: a systematic review-meta analysis of clinical studies

机器学习 随机森林 人工智能 药物滥用 算法 自杀预防 毒物控制 斯科普斯 健康信息学 医学 计算机科学 公共卫生 梅德林 精神科 医疗急救 护理部 政治学 法学
作者
Houriyeh Ehtemam,Shabnam Sadeghi Esfahlani,Alireza Sanaei,Mohammad Mehdi Ghaemi,Sadrieh Hajesmaeel‐Gohari,Rohaneh Rahimisadegh,Kambiz Bahaadinbeigy,Fahimeh Ghasemian,Hassan Shirvani
出处
期刊:BMC Medical Informatics and Decision Making [Springer Nature]
卷期号:24 (1) 被引量:1
标识
DOI:10.1186/s12911-024-02524-0
摘要

Abstract Objective Suicide is a complex and multifactorial public health problem. Understanding and addressing the various factors associated with suicide is crucial for prevention and intervention efforts. Machine learning (ML) could enhance the prediction of suicide attempts. Method A systematic review was performed using PubMed, Scopus, Web of Science and SID databases. We aim to evaluate the performance of ML algorithms and summarize their effects, gather relevant and reliable information to synthesize existing evidence, identify knowledge gaps, and provide a comprehensive list of the suicide risk factors using mixed method approach. Results Forty-one studies published between 2011 and 2022, which matched inclusion criteria, were chosen as suitable. We included studies aimed at predicting the suicide risk by machine learning algorithms except natural language processing (NLP) and image processing. The neural network (NN) algorithm exhibited the lowest accuracy at 0.70, whereas the random forest demonstrated the highest accuracy, reaching 0.94. The study assessed the COX and random forest models and observed a minimum area under the curve (AUC) value of 0.54. In contrast, the XGBoost classifier yielded the highest AUC value, reaching 0.97. These specific AUC values emphasize the algorithm-specific performance in capturing the trade-off between sensitivity and specificity for suicide risk prediction. Furthermore, our investigation identified several common suicide risk factors, including age, gender, substance abuse, depression, anxiety, alcohol consumption, marital status, income, education, and occupation. This comprehensive analysis contributes valuable insights into the multifaceted nature of suicide risk, providing a foundation for targeted preventive strategies and intervention efforts. Conclusions The effectiveness of ML algorithms and their application in predicting suicide risk has been controversial. There is a need for more studies on these algorithms in clinical settings, and the related ethical concerns require further clarification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
四夕发布了新的文献求助10
10秒前
yuansong715完成签到,获得积分20
13秒前
许大脚完成签到 ,获得积分10
14秒前
四夕完成签到,获得积分10
16秒前
19秒前
yuansong715发布了新的文献求助20
22秒前
yiyi131发布了新的文献求助10
24秒前
棠棠完成签到 ,获得积分10
24秒前
24秒前
28秒前
桐桐应助小鱼采纳,获得10
29秒前
活力竺完成签到,获得积分10
29秒前
fang发布了新的文献求助20
30秒前
活力竺发布了新的文献求助10
33秒前
39秒前
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
景辣条应助科研通管家采纳,获得10
40秒前
爱静静应助科研通管家采纳,获得10
40秒前
yiyi131完成签到,获得积分10
41秒前
222520zys完成签到,获得积分10
42秒前
43秒前
44秒前
222520zys发布了新的文献求助10
46秒前
丘比特应助十几采纳,获得10
46秒前
47秒前
艺术大师发布了新的文献求助10
48秒前
1分钟前
嘉嘉发布了新的文献求助10
1分钟前
星辰大海应助yuansong715采纳,获得10
1分钟前
传奇3应助激昂的微笑采纳,获得10
1分钟前
Docgyj完成签到 ,获得积分10
1分钟前
风起云涌龙完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助时尚的飞机采纳,获得10
1分钟前
草莓奶昔发布了新的文献求助20
1分钟前
嘉嘉完成签到,获得积分20
1分钟前
桃花源的瓶起子完成签到 ,获得积分10
1分钟前
科研冰山完成签到 ,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Pearson Edxecel IGCSE English Language B 300
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793540
关于积分的说明 7806835
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626917
版权声明 601314