Biomarker-Driven Oncology Trial Design and Subgroup Characterization: Challenges and Potential Solutions

生物标志物 医学 临床试验 药物开发 肿瘤科 人口 子群分析 临床研究设计 伴生诊断 重症监护医学 内科学 药品 荟萃分析 癌症 药理学 环境卫生 生物 生物化学
作者
Jian Wang,Binbing Yu,Yannan N. Dou,Jacques Mascaro
出处
期刊:JCO precision oncology [American Society of Clinical Oncology]
卷期号: (8) 被引量:1
标识
DOI:10.1200/po.24.00116
摘要

In oncology drug development, using biomarkers to select a study population more likely to benefit from a therapeutic effect is critical to increase the efficiency of a clinical trial in demonstrating effectiveness. This perspective delves into therapeutic product approvals that were tested in pivotal trials with all-comers populations, but ultimately received US Food and Drug Administration approval for use within specific patient subgroups identified by biomarkers. Despite initial designs for efficacy and safety assessments in overall populations, a favorable benefit-risk assessment was primarily established in biomarker-positive subgroups. Analyzing these cases, we summarize key considerations pivotal to totality of evidence for regulatory benefit-risk assessments for biomarker-defined subgroup versus all-comers approvals, including biological and clinical rationales, biomarker prevalence, safety data, overall trial design, and subgroup efficacy characterization. Furthermore, a decision tree is proposed to guide optimal clinical trial design, delineating between patient enrichment and stratification, accounting for key factors including biological and clinical rationale, marker type (discreate or continuous), prevalence, assay readiness, and turnaround times for marker assessment. Finally, a recommended approach for subgroup characterization involves prespecifying magnitude of improvement that would be considered clinically meaningful in the biomarker-negative subgroup, which can be supplemented with methodologies such as Bayesian to incorporate evidence from similar studies when available. In summary, this perspective underscores the importance of clinical trial innovations, statistical methodologies and regulatory considerations, to optimize biomarker-driven drug development for patients with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxyang发布了新的文献求助10
刚刚
开心完成签到,获得积分10
刚刚
研友_VZG7GZ应助执着又蓝采纳,获得10
1秒前
1秒前
1秒前
1秒前
超级裁缝完成签到,获得积分10
2秒前
科研通AI5应助heli采纳,获得10
2秒前
小张完成签到 ,获得积分10
2秒前
杨好圆完成签到,获得积分10
2秒前
2秒前
一年能吃800篇sci吗完成签到,获得积分10
3秒前
苹果新儿完成签到,获得积分10
3秒前
霸气的保温杯完成签到 ,获得积分10
3秒前
浅笑成风发布了新的文献求助10
4秒前
柴胡完成签到,获得积分10
4秒前
12345发布了新的文献求助10
4秒前
Crazy_Runner发布了新的文献求助10
5秒前
SLLB发布了新的文献求助10
5秒前
明天组会完成签到,获得积分10
5秒前
Jasper应助等待煜城采纳,获得10
5秒前
超级裁缝发布了新的文献求助10
5秒前
135完成签到,获得积分10
5秒前
6秒前
皮凡完成签到,获得积分0
6秒前
司空致远发布了新的文献求助10
6秒前
干净幻梦完成签到,获得积分10
6秒前
顾暖完成签到,获得积分10
6秒前
一只狗东西完成签到 ,获得积分10
7秒前
qq781208654完成签到,获得积分10
7秒前
7秒前
第七个太阳完成签到,获得积分10
8秒前
8秒前
未完完成签到,获得积分10
8秒前
8秒前
sweety发布了新的文献求助10
9秒前
碧蓝的初翠完成签到,获得积分10
9秒前
欣喜紫真完成签到,获得积分10
9秒前
Owen应助罗大大采纳,获得100
10秒前
yyan发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550859
求助须知:如何正确求助?哪些是违规求助? 3127173
关于积分的说明 9372741
捐赠科研通 2826359
什么是DOI,文献DOI怎么找? 1553691
邀请新用户注册赠送积分活动 725032
科研通“疑难数据库(出版商)”最低求助积分说明 714517