Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 语言学 生物 哲学 控制(管理)
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的凡灵完成签到,获得积分10
刚刚
搜集达人应助杭杭采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
无花果应助7777777采纳,获得10
2秒前
小饼一定要上岸完成签到 ,获得积分10
2秒前
欢喜无价完成签到,获得积分10
2秒前
屁王完成签到,获得积分10
4秒前
5秒前
伶俐的紫蓝完成签到,获得积分10
5秒前
2389937250应助不爱吃苹果采纳,获得10
6秒前
7秒前
qiancheng完成签到,获得积分10
7秒前
z_完成签到,获得积分10
7秒前
7秒前
Young完成签到,获得积分10
7秒前
Owen应助datiancaihaha采纳,获得10
9秒前
坠云完成签到,获得积分10
11秒前
重要海秋发布了新的文献求助10
12秒前
ballball233发布了新的文献求助10
13秒前
Young发布了新的文献求助20
13秒前
14秒前
独特的凡蕾完成签到 ,获得积分10
14秒前
fox完成签到 ,获得积分10
14秒前
wmf完成签到 ,获得积分10
15秒前
田様应助www采纳,获得10
15秒前
子车茗应助坠云采纳,获得20
16秒前
17秒前
xuan完成签到,获得积分10
17秒前
orixero应助musicyy222采纳,获得10
18秒前
destiny发布了新的文献求助30
19秒前
19秒前
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
落日游云完成签到,获得积分10
22秒前
陈翔发布了新的文献求助10
22秒前
23秒前
怡心亭完成签到 ,获得积分0
24秒前
24秒前
LeaF发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734970
求助须知:如何正确求助?哪些是违规求助? 5357733
关于积分的说明 15328255
捐赠科研通 4879430
什么是DOI,文献DOI怎么找? 2621934
邀请新用户注册赠送积分活动 1571143
关于科研通互助平台的介绍 1527931