Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 语言学 生物 哲学 控制(管理)
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
满意的匪发布了新的文献求助10
1秒前
1秒前
潇洒诗槐发布了新的文献求助10
2秒前
XINWU发布了新的文献求助10
2秒前
坤舆探骊者完成签到,获得积分20
3秒前
王强发布了新的文献求助10
3秒前
3秒前
礼已临发布了新的文献求助10
4秒前
基一啊佳发布了新的文献求助10
4秒前
小懿发布了新的文献求助10
4秒前
CLY完成签到,获得积分10
4秒前
隐形曼青应助安静的海角采纳,获得10
4秒前
swgcsqy完成签到,获得积分20
5秒前
Lucas应助BW打工仔采纳,获得10
5秒前
今后应助第七个星球采纳,获得10
5秒前
5秒前
小鱼完成签到,获得积分10
5秒前
6秒前
cici完成签到,获得积分10
6秒前
碧蓝俊驰完成签到,获得积分10
6秒前
周雨昕发布了新的文献求助10
6秒前
顾矜应助sugar采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
月倚樱落时完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
丘比特应助bok采纳,获得30
8秒前
英姑应助曹孟德啊采纳,获得10
8秒前
櫹櫆完成签到 ,获得积分10
8秒前
上弦月完成签到,获得积分10
9秒前
10秒前
10秒前
lml发布了新的文献求助10
10秒前
陈美宏完成签到,获得积分10
11秒前
11秒前
12秒前
周雨昕完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660641
求助须知:如何正确求助?哪些是违规求助? 4835016
关于积分的说明 15091506
捐赠科研通 4819242
什么是DOI,文献DOI怎么找? 2579181
邀请新用户注册赠送积分活动 1533670
关于科研通互助平台的介绍 1492441