亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 哲学 语言学 控制(管理) 生物
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助听风说情话采纳,获得10
4秒前
10秒前
兴奋的胡桃完成签到 ,获得积分10
12秒前
16秒前
29秒前
orixero应助六六采纳,获得10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
思源应助动听的不乐采纳,获得10
1分钟前
糊涂涂发布了新的文献求助10
1分钟前
糊涂涂完成签到,获得积分10
1分钟前
隐形曼青应助新橙采纳,获得10
2分钟前
GONGLI完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
六六发布了新的文献求助10
2分钟前
新橙发布了新的文献求助10
2分钟前
图图完成签到 ,获得积分10
2分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
风叶完成签到 ,获得积分10
3分钟前
彭于晏应助嗨好采纳,获得30
3分钟前
CodeCraft应助等待泥猴桃采纳,获得10
3分钟前
3分钟前
嗨好发布了新的文献求助30
3分钟前
朝朝完成签到,获得积分10
4分钟前
4分钟前
青出于蓝蔡完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
充电宝应助冷静新烟采纳,获得30
5分钟前
5分钟前
烟花应助lrz采纳,获得10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3319397
求助须知:如何正确求助?哪些是违规求助? 2950533
关于积分的说明 8552225
捐赠科研通 2627728
什么是DOI,文献DOI怎么找? 1437841
科研通“疑难数据库(出版商)”最低求助积分说明 666440
邀请新用户注册赠送积分活动 652427