已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 语言学 生物 哲学 控制(管理)
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣的芝麻完成签到 ,获得积分10
1秒前
还是你天天完成签到 ,获得积分10
2秒前
laifeihong完成签到,获得积分10
3秒前
3秒前
4秒前
刘123完成签到 ,获得积分10
4秒前
英俊的铭应助longer采纳,获得10
5秒前
看风关注了科研通微信公众号
5秒前
皞渺发布了新的文献求助10
6秒前
youjiwuji发布了新的文献求助10
7秒前
缓慢采柳完成签到 ,获得积分10
7秒前
8秒前
浓浓完成签到 ,获得积分10
9秒前
笨蛋搞笑女完成签到 ,获得积分10
10秒前
解你所忧完成签到 ,获得积分10
11秒前
12秒前
13秒前
13秒前
生信精准科研完成签到,获得积分10
13秒前
14秒前
14秒前
BowieHuang应助buno采纳,获得10
14秒前
Ww完成签到 ,获得积分10
14秒前
大个应助稳重的紫易采纳,获得10
14秒前
Jasper应助威武的水之采纳,获得10
14秒前
哈哈哈完成签到 ,获得积分10
16秒前
16秒前
16秒前
SciGPT应助CHEN采纳,获得10
18秒前
大意的雨双完成签到 ,获得积分10
18秒前
youjiwuji发布了新的文献求助10
19秒前
youjiwuji发布了新的文献求助10
19秒前
youjiwuji发布了新的文献求助10
19秒前
youjiwuji发布了新的文献求助10
19秒前
合适雅绿完成签到 ,获得积分10
19秒前
ZHANG完成签到 ,获得积分10
21秒前
李健应助月月月采纳,获得10
21秒前
Ava应助chai采纳,获得10
22秒前
吉祥高趙完成签到 ,获得积分10
22秒前
噔噔噔噔完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722957
求助须知:如何正确求助?哪些是违规求助? 5273976
关于积分的说明 15298034
捐赠科研通 4871748
什么是DOI,文献DOI怎么找? 2616169
邀请新用户注册赠送积分活动 1566020
关于科研通互助平台的介绍 1522944