Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 语言学 生物 哲学 控制(管理)
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
万能图书馆应助luobeimin采纳,获得10
1秒前
1秒前
FashionBoy应助非言墨语采纳,获得10
1秒前
2秒前
传奇3应助陈一朵采纳,获得10
3秒前
顾矜应助文俊伟采纳,获得10
3秒前
3秒前
4秒前
林林林林发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
田宇22333发布了新的文献求助10
7秒前
8秒前
汉堡包应助这波你的吗采纳,获得10
10秒前
轻松雁蓉发布了新的文献求助10
10秒前
11秒前
汉堡包应助深情海亦采纳,获得10
12秒前
zhong发布了新的文献求助10
12秒前
14秒前
djbj2022发布了新的文献求助10
14秒前
Jasper应助小马嘻嘻采纳,获得10
14秒前
14秒前
liyantong完成签到 ,获得积分10
15秒前
大个应助易烊千玺老婆采纳,获得10
15秒前
好好应助易烊千玺老婆采纳,获得10
15秒前
阿靖发布了新的文献求助30
15秒前
橙酒完成签到,获得积分10
15秒前
Sherlock完成签到,获得积分10
16秒前
16秒前
LizzyBronze发布了新的文献求助10
17秒前
17秒前
王会乐发布了新的文献求助60
18秒前
某某完成签到,获得积分10
18秒前
20秒前
20秒前
琢磨如君完成签到,获得积分10
21秒前
21秒前
轻松雁蓉发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039