Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 语言学 生物 哲学 控制(管理)
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车茗应助叶95采纳,获得30
刚刚
untilyou完成签到,获得积分10
1秒前
塇塇完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
流星雨发布了新的文献求助10
3秒前
NexusExplorer应助小医采纳,获得10
3秒前
4秒前
隐形曼青应助李健春采纳,获得10
6秒前
6秒前
6秒前
CC完成签到,获得积分10
6秒前
着急的青枫应助you采纳,获得10
7秒前
阿兹卡班完成签到 ,获得积分10
7秒前
初心完成签到 ,获得积分10
7秒前
开朗孤兰完成签到 ,获得积分10
7秒前
7秒前
陈哈哈发布了新的文献求助10
7秒前
ljw完成签到 ,获得积分10
7秒前
7秒前
hfguwn完成签到,获得积分10
8秒前
慢慢完成签到,获得积分10
8秒前
勤奋无敌发布了新的文献求助10
9秒前
10秒前
吴巷玉完成签到,获得积分10
10秒前
will发布了新的文献求助10
10秒前
如意的手套完成签到,获得积分10
11秒前
科研通AI2S应助流星雨采纳,获得10
11秒前
英姑应助Lily采纳,获得50
11秒前
小小区发布了新的文献求助10
11秒前
zz发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
wjr1212345完成签到 ,获得积分20
14秒前
栗子完成签到,获得积分10
15秒前
马霄鑫完成签到,获得积分10
15秒前
高挑的听南完成签到,获得积分10
15秒前
可爱多应助像风一样自由采纳,获得10
16秒前
Wtony完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814