Remaining useful life prediction for rolling bearings based on adaptive aggregation of dynamic feature correlations

特征(语言学) 控制理论(社会学) 计算机科学 工程类 结构工程 生物系统 人工智能 语言学 生物 哲学 控制(管理)
作者
Sichao Sun,Jie Luo,A. B. Huang,Xinyu Xia,Jiale Yang,Zhou Hua
出处
期刊:Journal of Vibration and Control [SAGE]
被引量:1
标识
DOI:10.1177/10775463241259619
摘要

It is significant to predict the remaining useful life (RUL) of the bearing to ensure its safe and stable operation. At present, the data-driven method has been successfully applied in the field of bearing RUL prediction. However, the feature correlations between data at different moments may be different, few methods can dynamically identify the change of the feature correlations between input data at different moments, which can impact the performance of the prediction. This article proposes an innovative RUL prediction method based on the adaptive feature correlations aggregation module (AFCA) and gated recurrent unit (GRU) to address this issue. First, statistical features are extracted from the vibration signal, and the fully connected graph is constructed to map the vibration signal data into the graph structure. Subsequently, the AFCA module is designed and constructed, and the AFCA-GRU model is built by combining GRU. A series of constructed fully connected graphs are fed into the model, and the hidden degradation information in graph structure data is mined to realize the prediction of bearing RUL. Among them, AFCA is used to adaptively explore the spatial correlations between graph node features at different moments, and GRU is used to explore the temporal correlations between graph structures. The PHM2012 Challenge dataset is utilized to validate the effectiveness of the proposed method. The comparative experimental results demonstrate that the performance of the method proposed herein surpasses that of other data-driven methodologies, with the capability to accurately predict the RUL of bearings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcx发布了新的文献求助10
刚刚
刚刚
如意代双完成签到 ,获得积分10
1秒前
向乌萨奇学习完成签到,获得积分10
1秒前
JJL发布了新的文献求助10
1秒前
漂亮的雪糕完成签到,获得积分10
2秒前
BIRDY完成签到,获得积分10
2秒前
2秒前
2秒前
xiongyh10完成签到,获得积分10
2秒前
香蕉觅云应助yilin采纳,获得10
3秒前
完美世界应助奔跑西木采纳,获得10
3秒前
lily发布了新的文献求助10
3秒前
lzf发布了新的文献求助10
3秒前
4秒前
斯文的人英完成签到,获得积分10
4秒前
5秒前
5秒前
蓝天发布了新的文献求助10
5秒前
5秒前
6秒前
科研通AI2S应助hky采纳,获得10
6秒前
星辰大海应助king采纳,获得10
8秒前
ZZG应助陌路孤星采纳,获得10
9秒前
murrayss发布了新的文献求助10
9秒前
waerteyang完成签到,获得积分10
10秒前
我叫杨二虎完成签到,获得积分10
10秒前
10秒前
Akim应助小启采纳,获得10
10秒前
阿松大发布了新的文献求助10
10秒前
wanci应助耍酷的友卉采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
谦让元槐发布了新的文献求助10
11秒前
11秒前
赘婿应助舒适香露采纳,获得10
12秒前
CR7应助生而追梦不止采纳,获得20
12秒前
可爱的函函应助碧蓝青梦采纳,获得10
13秒前
13秒前
13秒前
噢噢完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759448
求助须知:如何正确求助?哪些是违规求助? 5520206
关于积分的说明 15394058
捐赠科研通 4896538
什么是DOI,文献DOI怎么找? 2633747
邀请新用户注册赠送积分活动 1581851
关于科研通互助平台的介绍 1537271