Information Bottleneck Approach for Markov Model Construction

计算机科学 瓶颈 粒度 马尔可夫过程 马尔可夫链 维数之咒 统计物理学 状态空间 信息瓶颈法 理论计算机科学 人工智能 相互信息 机器学习 数学 物理 统计 操作系统 嵌入式系统
作者
Dedi Wang,Yunrui Qiu,Eric R. Beyerle,Xuhui Huang,Pratyush Tiwary
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (12): 5352-5367 被引量:5
标识
DOI:10.1021/acs.jctc.4c00449
摘要

Markov state models (MSMs) have proven valuable in studying dynamics of protein conformational changes via statistical analysis of molecular dynamics (MD) simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time. This process effectively coarse-grains time and space, integrating out rapid motions within metastable states. Thus, MSMs possess a multi-resolution nature, where the granularity of states can be adjusted according to the time-resolution, offering flexibility in capturing system dynamics. This work introduces a continuous embedding approach for molecular conformations using the state predictive information bottleneck (SPIB), a framework that unifies dimensionality reduction and state space partitioning via a continuous, machine learned basis set. Without explicit optimization of the VAMP-based scores, SPIB demonstrates state-of-the-art performance in identifying slow dynamical processes and constructing predictive multi-resolution Markovian models. Through applications to well-validated mini-proteins, SPIB showcases unique advantages compared to competing methods. It autonomously and self-consistently adjusts the number of metastable states based on specified minimal time resolution, eliminating the need for manual tuning. While maintaining efficacy in dynamical properties, SPIB excels in accurately distinguishing metastable states and capturing numerous well-populated macrostates. This contrasts with existing VAMP-based methods, which often emphasize slow dynamics at the expense of incorporating numerous sparsely populated states. Furthermore, SPIB's ability to learn a low-dimensional continuous embedding of the underlying MSMs enhances the interpretation of dynamic pathways. With these benefits, we propose SPIB as an easy-to-implement methodology for end-to-end MSMs construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邹聆岫发布了新的文献求助10
刚刚
2秒前
羌活完成签到 ,获得积分10
3秒前
范雅寒完成签到 ,获得积分10
3秒前
4秒前
颜好完成签到,获得积分10
4秒前
4秒前
开朗月饼完成签到,获得积分10
4秒前
5秒前
研友_VZG7GZ应助健壮的夜天采纳,获得30
5秒前
赘婿应助zzz采纳,获得10
5秒前
xiuxue424完成签到,获得积分10
6秒前
SciGPT应助zhang采纳,获得10
6秒前
十一一完成签到,获得积分10
7秒前
薛如霜完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
YRX关注了科研通微信公众号
8秒前
阳yang完成签到,获得积分10
9秒前
YJJ发布了新的文献求助10
9秒前
虚幻青曼发布了新的文献求助10
9秒前
yf发布了新的文献求助10
10秒前
猪猪hero发布了新的文献求助10
10秒前
10秒前
11秒前
繁华落幕完成签到,获得积分10
11秒前
桃子e完成签到 ,获得积分10
12秒前
12秒前
清明完成签到,获得积分10
12秒前
lilibetch完成签到,获得积分10
13秒前
润恩完成签到,获得积分10
13秒前
吕绪特完成签到,获得积分10
13秒前
Lucas应助chenisyu采纳,获得10
14秒前
tomf完成签到,获得积分10
14秒前
14秒前
无花果应助浪吃采纳,获得10
14秒前
研友_LJbNdL发布了新的文献求助10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149