清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Information Bottleneck Approach for Markov Model Construction

计算机科学 瓶颈 粒度 马尔可夫过程 马尔可夫链 维数之咒 统计物理学 状态空间 信息瓶颈法 理论计算机科学 人工智能 相互信息 机器学习 数学 物理 统计 操作系统 嵌入式系统
作者
Dedi Wang,Yunrui Qiu,Eric R. Beyerle,Xuhui Huang,Pratyush Tiwary
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (12): 5352-5367 被引量:5
标识
DOI:10.1021/acs.jctc.4c00449
摘要

Markov state models (MSMs) have proven valuable in studying dynamics of protein conformational changes via statistical analysis of molecular dynamics (MD) simulations. In MSMs, the complex configuration space is coarse-grained into conformational states, with dynamics modeled by a series of Markovian transitions among these states at discrete lag times. Constructing the Markovian model at a specific lag time necessitates defining states that circumvent significant internal energy barriers, enabling internal dynamics relaxation within the lag time. This process effectively coarse-grains time and space, integrating out rapid motions within metastable states. Thus, MSMs possess a multi-resolution nature, where the granularity of states can be adjusted according to the time-resolution, offering flexibility in capturing system dynamics. This work introduces a continuous embedding approach for molecular conformations using the state predictive information bottleneck (SPIB), a framework that unifies dimensionality reduction and state space partitioning via a continuous, machine learned basis set. Without explicit optimization of the VAMP-based scores, SPIB demonstrates state-of-the-art performance in identifying slow dynamical processes and constructing predictive multi-resolution Markovian models. Through applications to well-validated mini-proteins, SPIB showcases unique advantages compared to competing methods. It autonomously and self-consistently adjusts the number of metastable states based on specified minimal time resolution, eliminating the need for manual tuning. While maintaining efficacy in dynamical properties, SPIB excels in accurately distinguishing metastable states and capturing numerous well-populated macrostates. This contrasts with existing VAMP-based methods, which often emphasize slow dynamics at the expense of incorporating numerous sparsely populated states. Furthermore, SPIB's ability to learn a low-dimensional continuous embedding of the underlying MSMs enhances the interpretation of dynamic pathways. With these benefits, we propose SPIB as an easy-to-implement methodology for end-to-end MSMs construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dream完成签到 ,获得积分10
6秒前
星辰大海应助左白易采纳,获得10
28秒前
38秒前
39秒前
kklkimo发布了新的文献求助10
40秒前
左白易发布了新的文献求助10
43秒前
善学以致用应助左白易采纳,获得10
48秒前
大医仁心完成签到 ,获得积分10
1分钟前
kklkimo完成签到,获得积分10
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
zzr完成签到,获得积分20
1分钟前
zzr发布了新的文献求助10
1分钟前
nav完成签到 ,获得积分10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
lsh完成签到,获得积分10
3分钟前
小二郎应助默默南露采纳,获得10
3分钟前
5分钟前
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
6分钟前
7分钟前
浮游应助RIPCCCP采纳,获得10
7分钟前
Jsihao完成签到,获得积分10
7分钟前
是各种蕉完成签到,获得积分10
7分钟前
8分钟前
Jsihao发布了新的文献求助10
8分钟前
9分钟前
9分钟前
默默南露发布了新的文献求助10
9分钟前
默默南露完成签到,获得积分10
9分钟前
阿俊完成签到 ,获得积分10
9分钟前
皮皮完成签到 ,获得积分10
9分钟前
mama完成签到 ,获得积分10
10分钟前
随心所欲完成签到 ,获得积分10
10分钟前
11分钟前
刘刘完成签到 ,获得积分10
11分钟前
12分钟前
Orange应助dd采纳,获得10
12分钟前
拙青完成签到,获得积分10
12分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346897
求助须知:如何正确求助?哪些是违规求助? 4481285
关于积分的说明 13947546
捐赠科研通 4379319
什么是DOI,文献DOI怎么找? 2406300
邀请新用户注册赠送积分活动 1398883
关于科研通互助平台的介绍 1371769