Dynamic allocation of opposition-based learning in differential evolution for multi-role individuals

反对派(政治) 差速器(机械装置) 计算机科学 政治学 物理 法学 政治 热力学
作者
Jian Guan,Fei Yu,Hongrun Wu,Yingpin Chen,Zhenglong Xiang,Xuewen Xia,Yuanxiang Li
出处
期刊:Electronic research archive [American Institute of Mathematical Sciences]
卷期号:32 (5): 3241-3274 被引量:1
标识
DOI:10.3934/era.2024149
摘要

<abstract><p>Opposition-based learning (OBL) is an optimization method widely applied to algorithms. Through analysis, it has been found that different variants of OBL demonstrate varying performance in solving different problems, which makes it crucial for multiple OBL strategies to co-optimize. Therefore, this study proposed a dynamic allocation of OBL in differential evolution for multi-role individuals. Before the population update in DAODE, individuals in the population played multiple roles and were stored in corresponding archives. Subsequently, different roles received respective rewards through a comprehensive ranking mechanism based on OBL, which assigned an OBL strategy to maintain a balance between exploration and exploitation within the population. In addition, a mutation strategy based on multi-role archives was proposed. Individuals for mutation operations were selected from the archives, thereby influencing the population to evolve toward more promising regions. Experimental results were compared between DAODE and state of the art algorithms on the benchmark suite presented at the 2017 IEEE conference on evolutionary computation (CEC2017). Furthermore, statistical tests were conducted to examine the significance differences between DAODE and the state of the art algorithms. The experimental results indicated that the overall performance of DAODE surpasses all state of the art algorithms on more than half of the test functions. Additionally, the results of statistical tests also demonstrated that DAODE consistently ranked first in comprehensive ranking.</p></abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要问筠完成签到,获得积分10
刚刚
binbin完成签到,获得积分10
1秒前
小明同学发布了新的文献求助10
1秒前
小鹿斑比完成签到,获得积分10
2秒前
2秒前
2秒前
chum完成签到,获得积分10
2秒前
111发布了新的文献求助10
2秒前
LDY发布了新的文献求助10
2秒前
月宸发布了新的文献求助30
3秒前
小蘑菇应助不停采纳,获得10
3秒前
希望天下0贩的0应助二号采纳,获得10
3秒前
3秒前
3秒前
3秒前
莫道桑榆完成签到,获得积分10
3秒前
罗YF完成签到,获得积分10
4秒前
FashionBoy应助111采纳,获得10
4秒前
激昂的千萍完成签到 ,获得积分10
4秒前
5秒前
cskk发布了新的文献求助10
5秒前
顾矜应助Anita采纳,获得10
5秒前
Evelyn完成签到,获得积分10
5秒前
安寒发布了新的文献求助10
5秒前
shirley完成签到,获得积分10
5秒前
6秒前
6秒前
fanfan完成签到,获得积分10
6秒前
gmy发布了新的文献求助10
6秒前
吉吉国王完成签到,获得积分10
6秒前
科研通AI5应助小明同学采纳,获得10
7秒前
愉快天亦完成签到,获得积分10
7秒前
wwsybx发布了新的文献求助10
8秒前
迷了路的猫完成签到,获得积分10
9秒前
归燕发布了新的文献求助10
9秒前
星空完成签到,获得积分10
9秒前
Mayily发布了新的文献求助10
9秒前
9秒前
化龙完成签到,获得积分10
9秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
《中国建设》英文版对中国国家形象的呈现研究(1952-1965) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651024
求助须知:如何正确求助?哪些是违规求助? 3215564
关于积分的说明 9707145
捐赠科研通 2923256
什么是DOI,文献DOI怎么找? 1601013
邀请新用户注册赠送积分活动 753851
科研通“疑难数据库(出版商)”最低求助积分说明 732876