福布
葛兰素
生态学
生物群
优势(遗传学)
植物群落
植物生态学
特质
生物
物种丰富度
草原
计算机科学
生物化学
基因
程序设计语言
作者
Kailing Huang,Jonathan R. De Long,Xuebin Yan,Xiaoyi Wang,Chunlong Wang,Yiwei Zhang,Yuanyuan Zhang,Peng Wang,Guozhen Du,Mark van Kleunen,Hui Guo
出处
期刊:Ecology
[Wiley]
日期:2024-05-09
卷期号:105 (6)
被引量:2
摘要
Abstract Species traits may determine plant interactions along with soil microbiome, further shaping plant–soil feedbacks (PSFs). However, how plant traits modulate PSFs and, consequently, the dominance of plant functional groups remains unclear. We used a combination of field surveys and a two‐phase PSF experiment to investigate whether forbs and graminoids differed in PSFs and in their trait–PSF associations. When grown in forb‐conditioned soils, forbs experienced stronger negative feedbacks, while graminoids experienced positive feedbacks. Graminoid‐conditioned soil resulted in neutral PSFs for both functional types. Forbs with thin roots and small seeds showed more‐negative PSFs than those with thick roots and large seeds. Conversely, graminoids with acquisitive root and leaf traits (i.e., thin roots and thin leaves) demonstrated greater positive PSFs than graminoids with thick roots and tough leaves. By distinguishing overall and soil biota‐mediated PSFs, we found that the associations between plant traits and PSFs within both functional groups were mainly mediated by soil biota. A simulation model demonstrated that such differences in PSFs could lead to a dominance of graminoids over forbs in natural plant communities, which might explain why graminoids dominate in grasslands. Our study provides new insights into the differentiation and adaptation of plant life‐history strategies under selection pressures imposed by soil biota.
科研通智能强力驱动
Strongly Powered by AbleSci AI