Development and external validation of a multidimensional deep learning model to dynamically predict kidney outcomes in IgA nephropathy

医学 统计的 肾病 肾功能 可解释性 内科学 统计 人工智能 计算机科学 内分泌学 糖尿病 数学
作者
Tingyu Chen,Tiange Chen,W Xu,Shaoshan Liang,Feng Xu,D.-C. Liang,Xiang Li,Caihong Zeng,Guotong Xie,Fei Liu
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:19 (7): 898-907 被引量:2
标识
DOI:10.2215/cjn.0000000000000471
摘要

Key Points A dynamic model predicts IgA nephropathy prognosis based on deep learning. Longitudinal clinical data and deep learning improve predictive accuracy and interpretability in GN. Background Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. The aim of this study was to establish a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. Methods In this retrospective cohort study of 2056 patients with IgA nephropathy from 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets and 8797 windows in 18 kidney centers were assigned to an independent test set. Interpretable multivariable long short-term memory, a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using the Kaplan–Meier analysis and C-statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. Results The model achieved a higher C-statistic (0.93; 95% confidence interval, 0.92 to 0.95) on the test set than the machine learning prediction model that we developed in a previous study using only baseline information (C-statistic, 0.84; 95% confidence interval, 0.80 to 0.88). The Kaplan–Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. Conclusions In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学习完成签到,获得积分10
1秒前
菜狗发布了新的文献求助10
1秒前
英姑应助月亮采纳,获得10
1秒前
2秒前
英俊的铭应助hhg采纳,获得10
4秒前
4秒前
5秒前
oceanao应助木木酱采纳,获得10
6秒前
科研通AI2S应助胡思乱想采纳,获得10
7秒前
7秒前
7秒前
7秒前
田様应助多情的映波采纳,获得30
8秒前
孤独小震完成签到,获得积分20
8秒前
WRZ完成签到 ,获得积分10
9秒前
zp发布了新的文献求助10
9秒前
菜狗完成签到,获得积分10
11秒前
孤独小震发布了新的文献求助10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
tdd应助科研通管家采纳,获得20
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
月亮发布了新的文献求助10
14秒前
14秒前
hawaii66发布了新的文献求助30
14秒前
16秒前
淡然子轩完成签到,获得积分20
16秒前
J.发布了新的文献求助10
16秒前
arabidopsis完成签到,获得积分10
17秒前
个性的帽子完成签到,获得积分10
17秒前
17秒前
Endeavor发布了新的文献求助10
18秒前
科研通AI2S应助VPN不好用采纳,获得10
18秒前
星沐影发布了新的文献求助10
20秒前
Stevielau发布了新的文献求助10
20秒前
月亮完成签到,获得积分10
21秒前
无奈白竹完成签到,获得积分10
21秒前
兔子发布了新的文献求助10
21秒前
辛勤的沉鱼完成签到,获得积分10
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157400
求助须知:如何正确求助?哪些是违规求助? 2808877
关于积分的说明 7878622
捐赠科研通 2467207
什么是DOI,文献DOI怎么找? 1313264
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919