Development and External Validation of a Multidimensional Deep Learning Model to Dynamically Predict Kidney Outcomes in IgA Nephropathy

医学 统计的 肾病 肾功能 可解释性 内科学 统计 人工智能 计算机科学 内分泌学 糖尿病 数学
作者
Tingyu Chen,Tiange Chen,W Xu,Shaoshan Liang,Feng Xu,Dandan Liang,Xiang Li,Caihong Zeng,Guotong Xie,Zhihong Liu
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:19 (7): 898-907 被引量:3
标识
DOI:10.2215/cjn.0000000000000471
摘要

Key Points A dynamic model predicts IgA nephropathy prognosis based on deep learning. Longitudinal clinical data and deep learning improve predictive accuracy and interpretability in GN. Background Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. The aim of this study was to establish a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. Methods In this retrospective cohort study of 2056 patients with IgA nephropathy from 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets and 8797 windows in 18 kidney centers were assigned to an independent test set. Interpretable multivariable long short-term memory, a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using the Kaplan–Meier analysis and C-statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. Results The model achieved a higher C-statistic (0.93; 95% confidence interval, 0.92 to 0.95) on the test set than the machine learning prediction model that we developed in a previous study using only baseline information (C-statistic, 0.84; 95% confidence interval, 0.80 to 0.88). The Kaplan–Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. Conclusions In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻松的悟空完成签到 ,获得积分10
1秒前
susan完成签到,获得积分10
2秒前
0029完成签到,获得积分10
4秒前
Aki完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
7秒前
LXR完成签到,获得积分10
9秒前
thchiang发布了新的文献求助10
10秒前
李健应助北城采纳,获得10
10秒前
WDK发布了新的文献求助10
10秒前
11秒前
轻松的贞发布了新的文献求助10
11秒前
医学生Mavis完成签到,获得积分10
13秒前
nextconnie完成签到,获得积分10
13秒前
汉堡包应助yyj采纳,获得10
14秒前
zqh740发布了新的文献求助30
15秒前
16秒前
NexusExplorer应助pharmstudent采纳,获得10
17秒前
熊遇蜜完成签到,获得积分10
19秒前
panzer完成签到,获得积分10
20秒前
21秒前
lyt发布了新的文献求助10
22秒前
六月毕业关注了科研通微信公众号
23秒前
petrichor应助程程采纳,获得10
24秒前
圆儿完成签到 ,获得积分10
24秒前
潇洒的灵萱完成签到,获得积分10
24秒前
24秒前
24秒前
Toooo完成签到,获得积分10
25秒前
zqh740完成签到,获得积分10
25秒前
科研通AI5应助thchiang采纳,获得10
25秒前
lizzzzzz完成签到,获得积分10
26秒前
yyj发布了新的文献求助10
26秒前
请和我吃饭完成签到,获得积分10
27秒前
北城发布了新的文献求助10
28秒前
勤恳冰淇淋完成签到 ,获得积分10
29秒前
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824