Development and External Validation of a Multidimensional Deep Learning Model to Dynamically Predict Kidney Outcomes in IgA Nephropathy

医学 统计的 肾病 肾功能 可解释性 内科学 统计 人工智能 计算机科学 内分泌学 糖尿病 数学
作者
Tingyu Chen,Tiange Chen,W Xu,Shaoshan Liang,Feng Xu,Dandan Liang,Xiang Li,Caihong Zeng,Guotong Xie,Zhihong Liu
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:19 (7): 898-907 被引量:7
标识
DOI:10.2215/cjn.0000000000000471
摘要

Key Points A dynamic model predicts IgA nephropathy prognosis based on deep learning. Longitudinal clinical data and deep learning improve predictive accuracy and interpretability in GN. Background Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. The aim of this study was to establish a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. Methods In this retrospective cohort study of 2056 patients with IgA nephropathy from 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets and 8797 windows in 18 kidney centers were assigned to an independent test set. Interpretable multivariable long short-term memory, a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using the Kaplan–Meier analysis and C-statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. Results The model achieved a higher C-statistic (0.93; 95% confidence interval, 0.92 to 0.95) on the test set than the machine learning prediction model that we developed in a previous study using only baseline information (C-statistic, 0.84; 95% confidence interval, 0.80 to 0.88). The Kaplan–Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. Conclusions In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助薛定谔的猫采纳,获得10
刚刚
上官若男应助善良青筠采纳,获得10
1秒前
sian发布了新的文献求助10
2秒前
友好无敌完成签到,获得积分10
2秒前
SDNUDRUG完成签到,获得积分10
3秒前
wangwang发布了新的文献求助10
5秒前
苹果发布了新的文献求助30
5秒前
5秒前
sw98318发布了新的文献求助30
6秒前
搜集达人应助Layman采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
毕业在即完成签到 ,获得积分20
7秒前
科研通AI2S应助winndsd2采纳,获得10
7秒前
8秒前
kukusa发布了新的文献求助20
9秒前
9秒前
晴天发布了新的文献求助50
9秒前
xmz应助爱大美采纳,获得10
9秒前
10秒前
852应助Theprisoners采纳,获得10
11秒前
yup发布了新的文献求助10
11秒前
qin202569完成签到,获得积分10
13秒前
传奇3应助英勇冰淇淋采纳,获得10
13秒前
13秒前
复杂沛白发布了新的文献求助10
13秒前
epmoct完成签到 ,获得积分10
14秒前
April发布了新的文献求助10
15秒前
老鼠完成签到 ,获得积分10
15秒前
16秒前
17秒前
sw98318完成签到,获得积分10
18秒前
18秒前
xxfsx应助wangwang采纳,获得10
18秒前
lululuao完成签到,获得积分10
20秒前
凉笙墨染完成签到,获得积分10
20秒前
Lucas应助晨儿采纳,获得10
21秒前
无奈曼云完成签到,获得积分10
22秒前
佐小叶完成签到 ,获得积分10
22秒前
猫的树发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421804
求助须知:如何正确求助?哪些是违规求助? 4536726
关于积分的说明 14154805
捐赠科研通 4453274
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411293