已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and External Validation of a Multidimensional Deep Learning Model to Dynamically Predict Kidney Outcomes in IgA Nephropathy

医学 统计的 肾病 肾功能 可解释性 内科学 统计 人工智能 计算机科学 内分泌学 糖尿病 数学
作者
Tingyu Chen,Tiange Chen,W Xu,Shaoshan Liang,Feng Xu,Dandan Liang,Xiang Li,Caihong Zeng,Guotong Xie,Zhihong Liu
出处
期刊:Clinical Journal of The American Society of Nephrology [American Society of Nephrology]
卷期号:19 (7): 898-907 被引量:8
标识
DOI:10.2215/cjn.0000000000000471
摘要

Key Points A dynamic model predicts IgA nephropathy prognosis based on deep learning. Longitudinal clinical data and deep learning improve predictive accuracy and interpretability in GN. Background Accurately predicting kidney outcomes in IgA nephropathy is crucial for clinical decision making. Insufficient use of longitudinal data in previous studies has limited the accuracy and interpretability of prediction models for failing to reflect the chronic nature of IgA nephropathy. The aim of this study was to establish a multivariable dynamic deep learning model using comprehensive longitudinal data for the prediction of kidney outcomes in IgA nephropathy. Methods In this retrospective cohort study of 2056 patients with IgA nephropathy from 18 kidney centers, a total of 28,317 data points were collected by the sliding window method. Among them, 15,462 windows in a single center were randomly assigned to training (80%) and validation (20%) sets and 8797 windows in 18 kidney centers were assigned to an independent test set. Interpretable multivariable long short-term memory, a deep learning model, was implemented to predict kidney outcomes (kidney failure or 50% decline in kidney function) based on time-invariant variables measured at biopsy and time-variant variables measured during follow-up. Risk performance was evaluated using the Kaplan–Meier analysis and C-statistic. Trajectory analysis was performed to assess the various trends of clinical variables during follow-up. Results The model achieved a higher C-statistic (0.93; 95% confidence interval, 0.92 to 0.95) on the test set than the machine learning prediction model that we developed in a previous study using only baseline information (C-statistic, 0.84; 95% confidence interval, 0.80 to 0.88). The Kaplan–Meier analysis showed that groups with lower predicted risks from the full model survived longer than groups with higher risks. Time-variant variables demonstrated higher importance scores than time-invariant variables. Within time-variant variables, more recent measurements showed higher importance scores. Further interpretation showed that certain trajectory groups of time-variant variables such as serum creatinine and urine protein were associated with elevated risks of adverse outcomes. Conclusions In IgA nephropathy, a deep learning model can be used to accurately and dynamically predict kidney prognosis based on longitudinal data, and time-variant variables show strong ability to predict kidney outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好胜完成签到 ,获得积分10
刚刚
打打应助迷路枫采纳,获得10
刚刚
2秒前
小二郎应助Jsssds采纳,获得10
3秒前
5秒前
_hhhjhhh完成签到,获得积分10
6秒前
zfm完成签到 ,获得积分10
6秒前
6秒前
wcc发布了新的文献求助10
8秒前
hi发布了新的文献求助10
9秒前
9秒前
12秒前
13秒前
学术废物完成签到,获得积分10
13秒前
zjsy完成签到,获得积分10
16秒前
cyanpomelo发布了新的文献求助10
19秒前
1234566完成签到,获得积分10
19秒前
19秒前
zjsy发布了新的文献求助10
20秒前
伶俐的金连完成签到 ,获得积分10
21秒前
端庄白易完成签到,获得积分10
21秒前
鱼鱼完成签到 ,获得积分10
22秒前
顺利毕业完成签到 ,获得积分10
22秒前
22秒前
22秒前
slz发布了新的文献求助10
22秒前
貔貅完成签到,获得积分10
23秒前
Koi完成签到 ,获得积分10
23秒前
瑕不掩瑜发布了新的文献求助10
25秒前
cyanpomelo完成签到,获得积分10
26秒前
就在咫尺之间完成签到 ,获得积分10
26秒前
26秒前
27秒前
Jenny完成签到 ,获得积分10
27秒前
ryanfeng完成签到,获得积分0
27秒前
殷勤的弼发布了新的文献求助10
30秒前
小洛完成签到 ,获得积分10
30秒前
31秒前
风趣若烟发布了新的文献求助20
32秒前
千早爱音完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779434
求助须知:如何正确求助?哪些是违规求助? 5647681
关于积分的说明 15451875
捐赠科研通 4910775
什么是DOI,文献DOI怎么找? 2642857
邀请新用户注册赠送积分活动 1590536
关于科研通互助平台的介绍 1544921