材料科学
陶瓷
复合材料
热解
微观结构
极限抗拉强度
聚合物
涂层
复合数
陶瓷基复合材料
化学工程
工程类
作者
Zhiyou Gong,Zhongkai Xu,Jian Zhang,Ruisong Guo,Han Yao,Xiaohong Sun,Yuan Zhuang,Xinqi Zhao,Bingqing Zhang,Chunming Zheng
出处
期刊:Materials
[MDPI AG]
日期:2024-05-20
卷期号:17 (10): 2457-2457
摘要
SiBCN ceramics based on SiC, BN and Si3N4 structures have good comprehensive properties such as high-temperature resistance, oxidation resistance, creep resistance and long life, which makes it one of the very promising ceramic material systems in military and aerospace fields, etc. In this study, SiBCN ceramics, as well as Si3N4f/BN/SiBCN microcomposites, were prepared by a polymer infiltration pyrolysis method using PBSZ as the polymer precursor. The PBSZ was completely ceramized by pyrolysis at 900 °C. The weight loss and elemental bonding forms of the products after the pyrolysis of the precursors hardly changed from 600 °C to 900 °C. After pyrolysis at 600 °C for 4 h and using the BN coating obtained from twice deposition as the interfacial phase, a more desirable weak interface of fiber/matrix with a binding strength of 21.96 ± 2.01 MPa can be obtained. Si3N4f/BN/SiBCN ceramic matrix microcomposites prepared under the same pyrolysis conditions have a relatively good tensile strength of 111.10 MPa while retaining a weak interface between the fibers and the matrix. The results of the study provide more theoretical and methodological support for the application of new composite structural ceramic material systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI